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Vortex Lattice Structural Transitions: A Ginzburg-Landau Model Approach
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We analyze the rhombic to square vortex lattice phase transition in anisotropic superconductors using
a variant of Ginzburg-Landau theory. The mean-field phase diagram is determined to second order in
the anisotropy parameter, and shows a reorientation transition of the square vortex lattice with respect
to the crystal lattice. We then derive the long-wavelength elastic moduli of the lattices, and use them to
show that thermal fluctuations produce a reentrant rhombic to square lattice transition line, similar to
recent studies which used a nonlocal London model.
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Hc2, our results nicely complement and extend the non-
local London model results.

where �A is the usual Abrikosov parameter and � is the
correction to the isotropic result,
Vortex lattices in superconductors with fourfold an-
isotropy can exhibit a rhombic to square structural
phase transition due to a competition between the anisot-
ropy (favoring a square lattice) and the repulsive vortex-
vortex interaction (favoring a triangular lattice). This
transition has been observed in the borocarbide family
of superconductors RNi2B2C (with R a rare earth ele-
ment), whose anisotropy is due to lattice effects [1–5],
and more recently in the overdoped cuprate supercon-
ductor La1:83Sr0:17CuO4�� [6], whose anisotropy is due
to unconventional superconducting order. Recent small
angle neutron scattering (SANS) data for LuNi2B2C [1]
show the transition line in the H-T plane curving upward
and avoiding Hc2, contrasting with mean-field predic-
tions and underscoring the importance of thermal fluctua-
tions even in this low temperature superconductor. Some
features of the data can be understood using a nonlocal
London model developed by Kogan and collaborators
[7,8]; however, the London model is ostensibly only ap-
plicable at low magnetic inductions, leaving as an open
question the behavior close to Hc2. An alternate explana-
tion for the reentrant behavior of the vortex lattice tran-
sition is also available in the literature [9].

In this Letter we study the effect of thermal fluctua-
tions on the rhombic to square vortex lattice transition
using an anisotropic Ginzburg-Landau (GL) model. We
first determine the mean-field phase diagram to second
order in the anisotropy parameter, and find that even at
this level GL theory predicts a novel reorientation tran-
sition of the square vortex lattice with respect to the
crystal lattice, an effect overlooked in previous GL stud-
ies. We then derive the (nondispersive) elastic moduli of
the lattices using methods first pioneered by Brandt [10]
for isotropic superconductors. Finally, these moduli are
used to determine the fluctuation renormalized phase
boundary in the H-T plane. For parameters typical of
the borocarbides we find a reentrant phase boundary, in
agreement with the nonlocal London model results of
Ref. [11]. As GL theory is expected to be valid near
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Accounting for anisotropy, the linearized first GL
equation (in dimensionless units) is

�2 �  � ���2
x ��2

y�
2 � 0; (1)

where � � �r=i��A� is the covariant derivative and �
is the dimensionless anisotropy parameter. For the cup-
rates the anisotropic term can be derived rigorously from
the two field s- and d-wave GL free energy [12,13] by
integrating out the s-wave term [14]. For the conven-
tional, but highly anisotropic, borocarbides it is a phe-
nomenological term that will be sufficient to capture all
the interesting physics. The symmetry breaking proper-
ties of the anisotropic term dictate the introduction of the
orientation angle � of the vortex lattice relative to the
underlying crystal lattice —this term provides an effec-
tive coupling of the vortex and crystal lattices, and makes
structural transitions possible.

We have generalized the virial theorem of supercon-
ductivity [15,16] to include the anisotropic term in the
extended GL theory [17], with the result
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where the brackets h i denote spatial averaging.
Using the generalizations of the Abrikosov identities

derived with the help of Eq. (2), the free energy can be
cast into the compact form
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Throughout this Letter we will use the convenient pa-
rametrization �� i� � �b=a� exp�i��, where b and a are
the magnitudes of the two basis vectors of the vortex
lattice and � is the apex angle.

Equation (1) was solved perturbatively to second order
in the anisotropy parameter �, extending previous first
order results [18–20]. The second order calculation is
necessary to justify the use of perturbation theory and
at the same time to quantify the accuracy of the first order
correction. More importantly, we uncover new and un-
expected physics at second order: a reorientation transi-
tion of the square vortex lattice with respect to the crystal
lattice. The quantities �A and � are given in terms of
rapidly converging sums involving �, �, and �,
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�
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where the functions �0, �1, �1, �2 are periodic in � with
period 1, and are given by
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where Anm �
����
�

p
e2i���n

2�m2�e�2���n2�m2�. The prime de-
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notes a double sum: one over n,m and a second with n and
m replaced by �n� 1=2� and �m� 1=2�, respectively. We
perform a numerical minimization of the free energy (3)
with respect to �, �, and � to obtain the mean-field
vortex lattice structure as a function of the field and
temperature.We find a continuous transition from a rhom-
bic to square phase as � is increased. The second order
correction shifts the transition point by only about 1%
relative to the first order calculation, contrary to previous
claims [21] which neglected the lifting of the orienta-
tion degeneracy by the anisotropic term. Our numerical
investigations show unambiguously that a consistent ex-
ploration of the relevant phase space and an accurate
determination of the global minima of the GL free energy
(3) demands the inclusion of the orientational degree of
freedom �. After the structural phase transition occurs,
the square vortex lattice is oriented along the �110

direction, and remains in this preferred orientation until
a field br is reached. At that point another continuous
phase transition takes place, with the vortex lattice
changing its orientation while retaining its square shape.
At a given b > br, two equivalent configurations exist:
one with orientation angle � > �=4, and one with �0 �
�=2��. This reorientation transition occurs only at
second order in the anisotropy �.

Having determined the mean-field phase diagram of
the system, we now turn to the elastic properties of the
lattices. Assuming that the displacement field u is small
compared to typical lattice spacings, we calculate the
elastic moduli from the GL free energy (3) in the incom-
pressible limit, r � u � 0. For simplicity we have focused
on straight and parallel vortices; we do not expect the
structural transition to significantly affect the tilt modu-
lus c44. The relevant moduli are essentially nondispersive
[10], allowing us to consider uniform deformations. Now
there are many ways to choose the elastic moduli from the
independent components of the elastic tensor, and we will
follow the lead of Miranović and Kogan [22] and use as
the four independent elastic moduli for a rhombic lattice
the quantities csq, c66x, c66y, and cr, corresponding to four
particular deformations. The so-called ‘‘squash’’ defor-
mation is responsible for the transformation of the rhom-
bic to a square vortex lattice, and the corresponding
squash modulus csq vanishes at the transition point. The
other relevant deformations are the two pure shears in x
and y directions (which determine c66x, c66y) and the
rotation of the lattice about the direction of the magnetic
field (which determines cr).

All elastic moduli are obtained from the second de-
rivative of the GL free energy (3). The elastic energy can
be written as

E � 1
2#

2c�#�j#!0 �
1
2#

2@2#Fj#!0; (11)

where c�#� is the elastic modulus for each particular
deformation. Each elastic modulus is obtained from
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where Cij are the terms originating from the derivatives
of the GL free energy (3)

Cij � �2� �ij�f��b2 � F��A;ij

����;ij ����A;i�;j � �A;j�;i

� ��A;ij � 2���A;i�A;j�
g: (13)

The derivatives in the right hand side of Eq. (13) are
with respect to i; j � �, �, �, � � �2�2 � 1�=
��2�2 � 1��A � 1
, and ���1�b�2=��2�2�1��A�1
2.

The calculated elastic moduli for � � 0:11 and � � 10
(appropriate for the borocarbides) are shown in Fig. 1.
The transition from a rhombic to a square vortex lattice is
signaled by the vanishing of the squash modulus. At the
same point the two shear moduli merge into one because
of the higher symmetry of the square phase. At a still
higher field we observe the reorientation transition, which
occurs when cr � 0. This instability of the vortex lattice
with respect to rotations also exists in the nonlocal
London model [22]. There are experimental indications
for this instability, although its investigation has been
hampered so far by the high fields required for its obs-
ervation [23]. This reorientation transition is sensitive
to the value of �, and from our results we predict that
this transition will not occur in the cuprates (�� 100), as
the transition point where cr � 0 moves above Hc2.

We also note that anisotropic elasticity with a softer
shear modulus for shearing along the sides of the square
lattice than along the diagonals emerges naturally in this
model. This response of the vortex lattice is measured by
the ratio c66x=c66;�=4, which has a maximum at the tran-
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FIG. 1 (color online). The elastic moduli versus the reduced
field b for � � 0:11. In the inset we show the region where the
reorientation transition happens, as is signaled by the vanishing
of the rotation modulus cr.
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sition as can be seen in Fig. 2. It has been suggested [23]
that this behavior explains the anisotropic orientational
long range order observed in decoration patterns in
LuNi2B2C, which manifests itself as a significant differ-
ence in the correlation lengths along the �110
 and ��1110

directions.

We next turn to the effects of thermal fluctuations on
the vortex lattice structure. Following Gurevich and
Kogan [11], we will make the simplifying assumption
that harmonic fluctuations renormalize the three varia-
bles �, �, and �, which characterize the structure of the
vortex lattice, with the result that

� � ��1� ��2� ��u2
; (14)

� � ��1� ��2� ��u2
; (15)

� � �� � cot�u2; (16)

where overbars denote thermal averages. The rhombic to
square transition is then determined as the locus of points
in the H-T plane where csq � 0. For that purpose, the
squash elastic modulus csq is recalculated from Eq. (12)
using the renormalized variables �, �, �. This is not
performed self-consistently, as we do not take into ac-
count the effects of the fluctuations on the elastic moduli
themselves. This approach is justified due to the fact that
the mean squared displacement of the vortex u2 is finite at
H��T� [11]. There are two competing parameters, the
strength of the thermal fluctuations ( and the anisotropy
parameter � which is related to the nonlocality parameter
�GK of the nonlocal London model as � � ��GK=)0�

2 �
�1� t2�=12. To compare with the nonlocal London model
results, we take [11] +�T� � +0=

�������������
1� t2

p
and )�T� �

)0=
�������������
1� t2

p
, where t � T=Tc, so that ( � (0t=

�������������
1� t2

p
.

The dimensionless mean squared displacement is then
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�1� t2�
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FIG. 2. The ratio c66x=c66;�=4 versus the reduced field b.
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FIG. 3 (color online). The phase boundaries in the H-T plane
separating the square and rhombic vortex lattice obtained from
GL theory and the nonlocal London model. The line intercept-
ing Hc2�t� is the mean field GL result.
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with ,� 3 for LuNi2B2C [11]. The results of the numeri-
cal solution are shown in Fig. 3, for the same parameter
values used by Gurevich and Kogan [11], namely, �GK �
2:5)0 and (0 � 0:0064. With fluctuations, the phase
boundary curves backward and displays the ‘‘reentrant’’
behavior that was also obtained by Gurevich and Kogan.
The physical explanation of this feature is simple: ther-
mal fluctuations tend to wash out effects of the anisot-
ropy, so that the preferred symmetry of the lattice is
rhombic. Note that the abrupt termination of the transi-
tion line for the GL theory is an artifact of the perturba-
tive treatment of the anisotropy; at that point the
correction term � ceases to be small and the extended
GL theory becomes unstable. While this shortcoming of
the model could be remedied by including higher order
terms in the GL free energy, the overall qualitative fea-
tures of the phase diagram are expected to remain un-
changed. One such choice would be an additional isotropic
term. Nevertheless, the complications introduced in the
analysis by the unnecessary extra parameter would
clearly outweigh any potential benefits.

We have used the GL theory with an anisotropic, sym-
metry breaking term to study the evolution of the vortex
lattice and particularly the structural phase transition and
097002-4
its connection with the elastic response of the vortex
lattice. We have shown that to obtain the correct phase
diagram it is necessary to calculate properties up to
second order in the anisotropy; at this order a rotational
instability of the square vortex lattice appears. We predict
that this instability should be observable in the borocar-
bides but not in the cuprate superconductors. Including
thermal fluctuations in the model we were able to show
that the rhombic to square transition line exhibits reen-
trant behavior, similar to what is obtained within the
nonlocal London model, and in qualitative agreement
with SANS studies of LuNi2B2C.
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