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We report a novel closed-form analytic representation for the linear response relativistic wave
function of the hydrogenic ns1=2 level that is exposed to dipole radiation of frequency !. This result is
derived by means of a direct analytical solution of the inhomogeneous !-dependent Dirac equation. The
utility of the formulas obtained is demonstrated by new analytic and numerical calculations of the static
and dynamic relativistic dynamic polarizabilities of the lowest hydrogenic ns1=2 states.
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"i, "f being its eigenvalues; the subscripts k; l denote form, relativistic calculations based upon the PSDL
Ab initio studies of laser-induced processes with few-
particle quantum systems have attracted considerable
attention over the last few decades [1]. Currently, this
activity is revitalized and has acquired additional interest
due to recent highly precise spectroscopic measurements
on fundamental bound systems (e.g., see [2] and referen-
ces therein), such as hydrogen, positronium, muonium,
helium, H�

2 and D�
2 ions. In the course of these studies,

respective systems are usually exposed to a tunable laser
radiation, pulsed or continuous. This enables resonant
multiphoton bound-bound and/or bound-free transitions
to be induced and analyzed, while taking advantage of
ultrahigh resolution experimental methods. At the same
time, spurious field-induced perturbations, which make
their appearance even at rather weak laser signals, have to
be allowed for and removed from the spectra observed by
carrying out elaborate simulations of the multiphoton
dynamics [3,4] which such systems undergo in the pres-
ence of external fields. An extremely high precision in-
herent in the above measurements makes data obtained
thereby sensitive enough not only to most types of con-
ventional corrections, but also to relativistic, radiative
and QED effects as well [5]. As a result, this urges a fully
relativistic reformulation of a wide class of field-related
atomic and molecular characteristics, the most crucial
being the relativistic dynamic tensor of linear scattering
(RDTLS). For any pair of eigenstates, jii and jfi, of a
hydrogenic ion with a nuclear charge Z and reduced mass
m� � Mm=�M �m�, this fundamental second order
quantity can be expressed as (the reduced atomic units,
e2 � �h � m� � 1, are used throughout)

�Ckl�!;!0�
fi � �hfjQ̂Q�2�
kl �!;!0�jii; (1)

where

Q̂Q �2�
kl �!;!0� 


c2

!!0

�
�k�"i �!� ĤH��1�l

��l�"i �!0 � ĤH� i0��1�k

�
: (2)

Here ĤH � �ic� � r� c2�� �Z=r� is the standard rela-
tivistic Hamiltonian of an isolated hydrogenic atom with
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Cartesian components of the Dirac matrix � and the
tensor operator Q̂Q�2��!;!0�; !;!0 are arbitrary photon
energies and c � 137 is the speed of light.

Despite its considerable age, there have been quite a
few attempts to find a practically useful general analytical
representation for �Ckl�!;!0�
fi of Eq. (1). The majority
of accurate RDTLS calculations [6–10], mostly pure nu-
merical, have so far been carried out for the static 1s1=2 �
1s1=2 or 1s1=2 � 2s1=2 transitions in hydrogenic systems.
This is in contrast with the nonrelativistic DTLS studies,
wherein the closed form of the Coulomb Green’s function
has enabled exact analytic results for any states jfi; j ii,
and energies !;!0 to be obtained [11]. On the other hand,
the use of the relativistic Coulomb Green’s function in
analytic RDTLS studies is usually fraught with consid-
erable technical difficulties, thus often requiring alterna-
tive analytic techniques [12] and/or pure numerical
methods [7,10,13] to be employed instead. Even for the
ground state RDTLS, currently available analytical re-
sults [8,9,12] do not admit straightforward numerical
evaluation at !;!0 > I1s. This limitation prevents the
appropriate formulas from being used directly in the
above simulations, which the single photoionization of
levels may enter along with other open channels of their
excitations.

In this work �Ckl�!;!0�
fi is found analytically and
exactly by making use of relativistic version of a method
due to Podolsky [14], Sternheimer [15], Dalgarno, and
Lewis [16]. The latter will hereafter be referred to as the
PSDL method and constitutes direct solving an equation
satisfied by the linear (i.e., first-order) response relativis-
tic wave function (LRRWF) of the state jii,

� i�E� 
 c�E� ĤH��1� j ii: (3)

Thus � i�E� can be considered as the result of the con-
volution of the one-particle relativistic Green’s function,
ĜGE � �E� ĤH��1, with c�jii; the subscript i on � i�E�
will be dropped henceforth to simplify notations. Even
though there usually exists a formidable problem of cast-
ing expression for ��E� into a practically useful analytic
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approach appear to be technically simpler, particularly
numerical ones, as compared to those using the Green’s
function techniques. This advantage has been pointed out
in the former nonrelativistic PSDL studies (see [17] and
references therein), both numerical and analytic.

In the spirit of the PSDL method, we act with E� ĤH on
both sides of Eq. (3) to give

�E� ĤH�
��E� � c��jii: (4)

Here � � �1; 0 denotes spherical components of � and
�. In the following discussion we restrict ourselves to the
ns1=2 states,

jii�
�

fn�r��1=2;0;m�n�
i�gn�r��1=2;1;m�n�

�
; jfi�

�
fn0 �r��1=2;0;m0 �n�

i�gn0 �r��1=2;1;m0 �n�

�
;

where � � 1=c � 1=137 is the fine structure constant and
fn�r�, gn�r�, and �1=2;l;m�n� are, respectively, the radial
and spin-angular parts of the initial jns1=2i state with the
principal quantum number n � 1; 2; . . . ; appropriate
primed quantities will hereafter refer to the final n0s1=2
state. To separate angular variables in Eq. (2) we write


��E� � 
�1=2�
� �E� �
�3=2�

� �E� (5)

and assume that


�1=2�
� �E� � ��1�1=2���m

���
2

3

r � 1
2 1 1

2

���m � m

�

�
1

r

� i�1�r; "��1=2;1;���m�n�

��1�r; "��1=2;0;���m�n�

�
; (6a)


�3=2�
� �E� � ��1�1=2���m 4���

3
p

�
3=2 1 1=2

���m � m

�

�
1

r

� i�2�r; "��3=2;1;���m�n�

��1�r; "��3=2;2;���m�n�

�
; (6b)

����
���
� being the usual 3j symbols and " � E� c2. In terms
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of % � 2"r, " �
����������������������������
�"�2� �2"�

p
, #1 �

���������������������
1� ��Z�2

p
, and

#2 �
���������������������
4� ��Z�2

p
, a system of first-order differential

equations satisfied by �j�r; "�; �j�r; "�; j � 1; 2 can be
uncoupled by means of the substitutions [2],�

�j�r; "�
�j�r; "�

�
� %#je�%=2

�
Pj�%� �Qj�%�

� "
" �Pj�%� �Qj�%�


�
; (7)

to result eventually in the following hypergeometric-type
equations for the four auxiliary functions, Pj�%�; Qj�%�:"

P00
j �%� � �aj � %�P0

j�%� � bjPj�%�

Q00
j �%� � �aj � %�Q0

j�%� � �bj � 1�Qj�%�

#

� %#1�#je�%
Xn
m�0

%m

"
C�j�

m

B�j�
m

#
: (8)

Here aj � 2#j � 1, bj � #j � �Z="��1� �2"�, � �

�"N � Z�=�2"N�, and N �
�����������������������������������������������
n2 � 2�n� 1��1� #1�

p
. For

any n � 1; 2; . . . and j � 1; 2 each function of the pair,
fPj�%�; Qj�%�g, can be expressed in terms of the other
one. So are two )-independent sets of coefficients,
fC�j�

m gnm�0 and fB�j�
m gnm�0, whose general forms are given

by elementary yet bulky expressions [2]. Together with
obvious symmetry properties of Eqs. (8), this enables all
four functions to be determined simultaneously by using
proper analytical solution to any single equation. To fix it
uniquely, we impose the following boundary conditions:�

�j�r; "�
�j�r; "�

�
�

	
0; if r ! 0;
o�e�"�

Z
N�r
; if r ! 1;

(9)

that follow directly from a requirement that the LRRWF,

�E�, of Eqs. (3)–(6) should remain finite for any E. After
some elaborate algebra whose details will be given else-
where, four solutions can be compactly expressed as�

Pj�%�
Qj�%�

�
�

Xn
m�0

"
C�j�

m S�j�
m �%; z; bj�

B�j�
m S�j�

m �%; z; bj � 1�

#
; (10)

where S�j�
m �%; z;-� satisfies the recurrence relation,

S�j�
m�1�%; z;-� � �1� z�2�@=@z�S�j�

m �%; z;-�, and has the
form
S�j�
m �%;z;-� ��

��#�
j �m� 1�

��2#j � 1�
�1� z�#

�
j �1�m

�
Z 1

0
exp

�
%zt

1� tz

�
t-�1�1� t�m�#�

j �1� zt��#�
j �m�1 � 1F1

�
#�

j �m;2#j � 1;�
%�1� z�t

�1� zt��1� t�

�
dt: (11)
Here #�
j � #j � #1 so that #�

1 � 0, z � �"N � Z�=
�"N � Z� and 1F1�. . .� is the confluent hypergeometric
function [18]. For n and " such that bj <�1, the integral
in Eq. (11) formally diverges.

10

Ct

Its analytical continuation to all n and the entire complex
" plane can be carried through by replacing the definite
integral with a contour one,
R
1
0 . . . dt ! �exp�23i-� �

1
�1 H
C . . . dt, taken along the path C shown above.

Equations (10) and (11) generalize appropriate nonrela-
tivisitic results [3,19] that can be retrieved by setting
#1 � 1, #2 � 2, N � n, " � �Z2=�242n2�, " � Z=�4n�,
z � �1� 4�=�1� 4�, b2 � 2� 4n, and b1 � 1� 4n.
The quantity Sm�%; z;-� in Eq. (10) can also be expressed
further in terms of the Appel �1 functions [20]. The
integral representation of Eq. (11) appears, however, to
be much more convenient for most practical applications,
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both analytical and numerical. This last feature is illus-
trated in Fig. 1 where, as a typical example, we present
graphs of all four radial components of the hydrogenic
(Z � 1) 2s1=2 state LRRWF calculated for r � 0; . . . ; 15
and 0 � ! � "� "2s1=2 � "3s1=2 � "2s1=2 .

As an important byproduct application of the LRRWF,
Eqs. (3)–(11) are now used to calculate analytically the
RDTLS for the hydrogenic jii � jns1=2i and jfi �
jn0s1=2i states, in which case (also assuming m0 � m)
the tensor �Ckl�!;!0�
n0s;ns can be expressed as

�Ckl�!;!0�
n0n � �
-kl

9!!0
�Tn0n�!� � Tn0n��!0�
; (12)

with -kl being the Kroneckers’s symbol. It is convenient
to split the scalar function Tn0n�!� into two parts,

Tn0n�!� � T�1=2�
n0n �!� � 8T�3=2�

n0n �!�; (13)

and express [2] T��1=2�;�3=2�

n0n in terms of �j�r; "�; �j�r; "�

and fn0 �r�; gn0 �r�. Subsequent cumbersome but quite
FIG. 1. Four radial components, �1;2�r; "2s1=2 �!� and
�1;2�r; "2s1=2 �!�, of the LRRWF for the 2s1=2 state of a
hydrogenic ion with Z � 1 versus radial distance, r, and photon
energy ! � "3s1=2 � "2s1=2 .
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straightforward calculation finally yields

T�1=2�
n0n � �

2"
"� Z

" Xn0

m0�0

Xn
m�0

B�1�
m0 B

�1�
m S�1�

m0m�z
0; z� � F�1=2�

n0n

#
;

T�3=2�
n0n � �

2"
2"� Z

" Xn0

m0�0

Xn
m�0

B�2�
m0 B

�2�
m S�2�

m0m�z
0; z� � F�3=2�

n0n

#
:

Here B�j�
m0 ; B

�j�
m have already been introduced above and

F�1=2�
n0n �

1

4"2

Z 1

0
r3�3"fn0 �r� � "gn0 �r�


� �3"fn�r� � "gn�r�
dr; (14a)

F�3=2�
n0n �

"2

4"2

Z 1

0
r3gn0 �r�gn�r�dr: (14b)

The function S�j�
m0m�z

0; z� � S�j�
mm0 �z; z0� satisfies recurrence

relations: S�j�
m0�1;m�z

0; z� � �1� z0�2�@=@z0�S�j�
m0m�z

0; z�,
S�j�
m0;m�1�z

0;z�� �1�z�2�@=@z�S�j�
m0m�z

0;z�, and it is given by
S�j�
m0m�z

0; z� � �
��#�

j �m0 � 1���#�
j �m� 1�

��2#j � 1�
� �1� z0�#

�
j �1�m0

�1� z�#
�
j �1�m�exp�23ibj� � 1
�1

�
I

C
dt tbj

�1� z0t�m�#�
j �1� zt�m

0�#�
j

�1� z0zt�2#1�m0�m�1
� 2F1

�
#�

j �m0; #�
j �m; 2#j � 1;

t�1� z0��1� z�
�1� z0t��1� zt�

�
; (15)
where " � "ns1=2 �! is assumed in all formulas above,
z0 � �"N0 � Z�=�"N0 � Z� and 2F1�. . .� is the hypergeo-
metric function [18]. A form of S�1�

m0m�z
0; z� for any m0; m

can be found by acting with �1�z�2�@=@z� and �1�z0�2 �
�@=@z0� on S�1�

00 �z
0;z������2#1�1�=b1
��1�z0� �

�1�z�
2#1�1
2F1�2#1�1;b1;b1�1;z0z�. The same

method is also applicable to j � 2. Although Eq. (15) is
already well suited in this case as it is, it may be used to
derive a number of as yet unknown series representations
for S�2�

m0m�z
0; z�. These can be obtained by replacing the 2F1

function with the Mellin-Barnes integral [18] to yield
expansions converging — unlike that of Refs. [8,9] — in
jz0j � 1; jzj � 1, i.e., enabling Ckl�!;!0� to be calculated
at !0; ! > Ins. Of particular interest in this context are
diagonal ns1=2 ! ns1=2 transitions (z0 � z), in which
case RDTLS reduces to the relativistic dipole dynamic
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FIG. 2. (a),(c): RDDPs, Z4�1s�!;Z� and Z4�2s�!;Z�, of the
hydrogenic 1s1=2 and 2s1=2 states with Z � 1 (solid line), Z �
60 (dashed line) and Z � 100 (dash-dotted line) as functions
of ! > I1s; I2s; (b),(d): ! and Z dependence of the funct-
ions Kns�!;Z�: �ns�!;Z� � ��nr�

ns �!;Z��1� Kns�!; Z� ��Z�2
,
n � 1; 2.
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polarizability (RDDP) of the ns1=2 level, �ns�!� 

�Ckl�!;!�
ns;ns=-kl. The utility of our analytic technique
is demonstrated in Fig. 2 where we display results of
RDDP calculations for the 1s1=2 and 2s1=2 states at !
lying above respective ionization thresholds [for the 2s1=2
level RDDP, see Eq. (18)].
093001-4
Finally, we present here new analytic results for the
static RDP of the lowest ns1=2 states, as being of
fundamental interest in their own right. The cal-
culations have been carried out by first setting
!0 � ! in Eqs. (12) and (13) and then taking the limit
! ! 0. After some elaborate technical work, we get
eventually:
Z4�1s�0� �
�2�#1�

2�2�#2 �#1 � 2�

18�#1 �#2 � 1���2#2 � 1���2#1 � 1� 3F2�#�
2 � 1;#�

2 � 1;#�
2 � 1;#�

2 � 2;2#2 � 1;1�

�
1

36
�2#1 � 1��1�#1��12� 13#1 � 4#2

1� (16)

�
9

2
�

�
1�

28

27
��Z�2 �

31� 232

432
��Z�4 �

6607� 67232 � 51847�3�� 41472-1

746496
��Z�6 � . . .

�
; (17)

Z4�2s�0� ��
2Z4

�2�"3

X3=2
m0��3=2

jh2s1=2j�zj2p3=2ij
2 �

N5�3N� 4�2�2#2�N4 � 2N2 � 4��N6 � 4N4 � 14N2 � 8


384�2�N��N� 1���2�#2 �#1 � 1���2#2 � 1���2#1 � 1�
(18)

�3F2�#�
2 ;#�

2 �1;#�
2 �1;#�

2 �1;2#2�1;1��
N5�N�1��7N6�28N5�53N4�58N3�20N2�136N�16�

192�2�N�

�120 �

�
1�

367

240
��Z�2�

199232�518407�3��10368-2�36125

138240
��Z�4� . . .

�
: (19)
Here N �
���������������������
2�#1 � 1�

p
, 7�3� � 1:202 06 . . . is the value of

the Riemann zeta function [18], �" � "2p3=2
� "2p1=2

, and

3F2�. . . ; 1� denotes the hypergeometric function of the
argument 1; -1 � 0:01620 . . . and -2 � �0:08016 . . .
stand for numerical sums of two elementary series.
The forms of Eqs. (16) and (17) are in accord with that
formerly obtained in Ref. [6] by making use of the
relativisitic Green’s function in the r gauge. Also, their
values are in agreement with those computed in Ref. [10]
within the framework of a basis set method. The first extra
term in Eq. (18) has been added so as to remove a spurious
part of the total 2p3=2 contribution to the 2s1=2 state
RDDP, 2=��2�"��1=��"2 �!2� � 1=!2


P3=2
m0��3=2 �

jh2s1=2j�zj2p3=2ij
2, which is singular [’ 384��2=Z6] as

� ! 0 at ! � 0. Thus regularized RDDP, �2s�0�, is
meaningful at � � 0, thereby enabling its nonrelativisitic
limit [11,17] to be retrieved [cf. Eq. (19)]. Among other
potential applications of the LRRWF approach is a wide
spectrum of low-energy scattering and laser-induced
phenomena occurring with few-body atoms and mole-
cules. These studies are in progress and their results will
be reported in due course.
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