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We perform a perturbative QCD analysis of the nucleon’s Pauli form factor F2�Q
2� in the asymptoti-

cally large Q2 limit. We find that the leading contribution to F2�Q2� has a 1=Q6 power behavior,
consistent with the well-known result in the literature. Its coefficient depends on the leading- and
subleading-twist light-cone wave functions of the nucleon, the latter describing the quarks with one unit
of orbital angular momentum. We also derive at the logarithmic accuracy the asymptotic scaling
F2�Q

2�=F1�Q
2� � �log2Q2=�2�=Q2 which describes recent Jefferson Lab data well.
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then 1=Q . This is confirmed by calculations where the
quark masses are the mechanism for the helicity flip

FIG. 1. A leading QCD diagram contributing to the nucleon’s
form factors.
The electromagnetic form factors are fundamental ob-
servables of the nucleon containing important informa-
tion about its internal nonperturbative structure. Since the
first measurement in the mid 1950s, experimental studies
of these observables have become an active frontier in
nuclear and particle physics. More recently, with the
development of novel experimental techniques, the mag-
netic form factor of the proton and electric and magnetic
form factors of the neutron have been measured with
unprecedented precision at Jefferson Lab and other facili-
ties around the world [1]. In particular, the Pauli form
factor of the proton F2 extracted from the recoil polar-
izations at Jefferson Lab reveals a significant difference
from previous data and theoretical expectations [2,3]. The
data show that the ratio of Dirac to Pauli form factor
Q2F2�Q

2�=F1�Q
2� continues climbing at the largest Q2’s

measured and seems to scale as
������
Q2

p
. The result has

sparked myriad speculations on its implication about
the underlying microscopic structure of the proton [4–8].

A simple dimensional counting rule was devised in
Refs. [9,10] to determine the dominant power contribu-
tion to hadronic form factors at large momentum transfer.
For the hadron helicity-conserving form factor F1�Q2�, it
predicts a dominant scaling behavior 1=Q4. The power
counting can be justified by QCD factorization theorems
which separate short-distance quark-gluon interactions
from soft hadron wave functions [11–18]; see Fig. 1.
Recently, a more sophisticated formalism has been de-
veloped to include higher-order perturbative QCD
(PQCD) resummation, or Sudakov form factor, which
treats contributions from the small-x partons more appro-
priately [18–22]. The procedure extends the applicability
of leading-order PQCD predictions to moderate Q2, but
does not change the dominant power-law behavior sig-
nificantly [17,22,23].

The literature on PQCD studies of F2�Q2�, however,
is much meager. Since F2�Q2� is related to the hadron
helicity-flip amplitude, its power behavior is suppressed
compared to F1�Q2� � 1=Q4, and a natural expectation is
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[9,24]. Since the up and down current quark masses are
negligible, the dominant mechanism for the spin flip in
QCD comes from the quark orbital angular momentum
and the polarization of an extra gluon which must be
included to maintain gauge invariance [25]. A general-
ized power counting including the parton orbital angular
momentum validates the expected scaling law for F2�Q

2�
[26]. An actual PQCD calculation for F2�Q

2� requires the
extension of the usual formalism to include the quark
orbital angular momentum; a technology has not yet been
systematically developed in the literature. The recent
development in classification of the light-cone wave func-
tions [27,28] provides the necessary ingredient to per-
form these calculations.

In this paper we report on a first PQCD calculation of
F2�Q

2� at asymptotically large momentum transfer Q2.
Modulo logarithms, we confirm that the leading contri-
bution to F2�Q

2� goes like 1=Q6. The coefficient of the
leading-power term depends on leading-order (twist-
three) and next-to-leading order (twist-four) light-cone
wave functions. The latter is the probability amplitude
for one of the quarks to carry one unit of orbital angular
momentum. We compute the leading-order perturbative
kernel and estimate the coefficient using models for the
light-cone wave functions. We comment on the role of the
Sudakov form factor in regulating possible end-point
singularities in the phase space integrals. We also derive
with the logarithmic accuracy the asymptotic scaling
F2�Q2�=F1�Q2� � �log2Q2=�2�=Q2 which we find to de-
scribe the data unexpectedly well.
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To start with, we choose a coordinate system for the
process P� �� ! P0 such that P and P0 form conjugate
light-cone vectors. We let the light-cone components P�

and P0� be large in the asymptotic limit, Q2 	 2P�P0�.
The F2�Q2� form factor can be extracted from the
helicity-flip matrix element

hP0
"jJ

�jP#i 	 F2�Q
2� 	uu"�P

0�
i���q�
2M

u#�P�; (1)

where J� is the quark electromagnetic current and u�P� is
an on-shell spinor of the nucleon with momentum P.

A perturbative analysis of the above matrix element is
done by computing leading-order Feynman diagrams
with two gluon exchanges (for a typical graph see Fig. 1)
in which the initial (final) nucleon contains three quarks
with longitudinal momenta xiP (yiP0) and transverse mo-
menta ki (k0i) of order �QCD. Two hard-gluon exchanges
ensure that the three quarks in the final-state propagate
collinearly after the injection of a large momentum trans-
fer q�. Since up and down quarks are light, quark helicity
is approximately conserved during the hard scattering.
Therefore, to produce a nucleon-spin flip, the quark orbi-
tal angular momentum in the initial and final states must
differ by one unit. The leading contribution to F2�Q

2�
comes from the configurations in which the quarks in the
initial or the final state carry a zero unit, and those in the
other state carry one unit, of orbital angular momentum.
For definiteness, let us assume that the final-state quarks
are symmetric in azimuth.

To isolate the leading contribution, we expand the hard
part of the diagram in k2i =Q

2 in the limit of large Q2 and
xi � 0 (a procedure dubbed the collinear expansion). We
will comment on the xi ! 0 case later. Since the final-
state nucleon has no orbital angular momentum, we
throw away all the subleading terms in k0i. On the other
hand, the quarks in the initial state nucleon have one unit
of orbital angular momentum, and hence the hard part
must have linear terms in the quark transverse momenta.
Therefore, the leading hard part we are interested in has a
structure k iT�x1; x2; x3; y1; y2; y3;Q

2�.
Let us consider the simplification of the nucleon wave

functions after the collinear expansion. For definiteness,
we consider the proton form factor. The light-cone wave
function for the final state is

jP"i1=2 	
1

12

Z �dx��d2k���������������
x1x2x3

p  1��1; �2; �3�"
abcuya"��1�

� fuyb#��2�d
y
c"��3� � dyb#��2�u

y
c"��3�gj0i;

(2)

where the argument �i is a shorthand notation for �xi; ki�,
and the integration measures for the quark momenta are

�dx� � dx1dx2dx3��x1 � x2 � x3 � 1�;

�d2k� � d2k1d2k2d2k3��2��k1 � k2 � k3�:

If the hard part has no dependence on k0i, we can ignore
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the transverse momentum dependence in the quark crea-
tion operators and define the twist-three amplitude

�3�x1; x2; x3� 	 2
Z
�d2k� 1��1; �2; �3�:

Then the final nucleon state can be simplified to

jP"i1=2 	
1

24

Z �dx���������������
x1x2x3

p �3�x1; x2; x3�"
abcuya"�x1�

� fuyb#�x2�d
y
c"�x3�� dyb#�x2�u

y
c"�x3�gj0i: (3)

Since the quarks in the initial nucleon state must have a
total helicity 1=2, only the following wave function com-
ponent is relevant [27,28]:

jP#i1=2 	
1

12

Z �dx��d2k���������������
x1x2x3

p f 	kk1? 3 � 	kk2? 4g

� ��1; �2; �3�"abcu
y
a"��2�

� fuyb#��1�d
y
c"��3� � dyb#��1�u

y
c"��3�gj0i;

(4)

where we use the notation 	kk? � kx � iky.
The spin-isospin structure of this wave function is

exactly the same as that in Eq. (3). After the collinear
expansion, the above wave function will be convoluted
with a transverse momenta of quarks. We define the twist-
four amplitudes via

�4�x2; x1; x3� 	 2
Z �d2k�
Mx3

k3 � fk1 3 � k2 4g��1; �2; �3�;

�4�x1; x2; x3� 	 2
Z �d2k�
Mx2

k2 � fk1 3 � k2 4g��1; �2; �3�:

Apart from a gluon-potential dependent term, the above
light-cone amplitudes are the same as those defined in
Ref. [29]. In the following, we include the former so that
the result is gauge invariant. To the order that we are
working, the gluon-potential terms arise from perturba-
tive diagrams with explicit gluons attached to the nucleon
blobs. These contributions are generally considered as
dynamically suppressed [30].

We introduce effective nucleon wave functions for the
initial state after integrating over the transverse momenta
weighted with a momentum factor from the hard part,

jP#i1=2�k1� 	
M
24

Z �dx���������������
x1x2x3

p x1�4�x2; x1; x3��
abcuya"�x1�

� fuyb#�x2�d
y
c"�x3� � dyb#�x2�u

y
c"�x3�gj0i;

(5)

jP#i1=2�k3� 	
M
24

Z �dx���������������
x1x2x3

p x3�4�x1; x2; x3��
abcuya"�x1�

� fuyb#�x2�d
y
c"�x3� � dyb#�x2�u

y
c"�x3�gj0i;

(6)
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where the argument on the left-hand side indicates the
momentum being averaged.

Using the twist-three and -four amplitudes, we can
write the F2�Q2� form factor in the following factor-
ized form:

F2�Q
2� 	

1

32

Z
�dx��dy�fx3�4�x1; x2; x3�T��fxg; fyg�

� x1�4�x2; x1; x3�T��fxg; fyg�g

� �3�y1; y2; y3�; (7)

where fxg 	 �x1; x2; x3�. Let us see how to extract the hard
part, T, in Fig. 1.

We use the nomenclature and strategy of Ref. [11] by
calling the top quark line 1, the middle 2, etc., without
committing them to a specific flavor. Given the spin-
isospin structure of the initial and final-state nucleon
wave functions, we assume that the first and third quarks
have spin up and the second one spin down. Call the
amplitudes Ti when the electromagnetic current acts on
particle i. Clearly because of symmetry, T3 can be ob-
tained from T1 by a suitable exchange of variables (see
below). Using the SU�6� wave function and the quark
charge weighting, we find the flavor structure of the
hard part for the proton,

Tp�fxg; fyg� 	
2eu
3
T1 �

eu � ed
3

�T2 � T3�

�
eu
3
�T0

1 � T0
3� �

ed
3
T0
2; (8)

where we have omitted the argument of Ti on the right-
hand side, and T0

i has y1 and y3 interchanged. For the
neutron, u$ d.

To find the expression for the hard part, we must
calculate perturbative diagrams displayed in Fig. 2. A
straightforward evaluation yields

T1��fxg; fyg� 	
32M2C2

B

Q6
�4!�s�

2x3�G11 �G12�; (9)

T1��fxg; fyg� 	
32M2C2

B

Q6
�4!�s�

2��x1G11 � 	xx1G12�;
FIG. 2. Perturbative diagrams contributing to the hard part
of F2. Mirror symmetric graphs have been added.
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T2��fxg; fyg� 	
32M2C2

B

Q6
�4!�s�2

� �x3�G22 � ~GG21 � ~GG22� � 	xx3G21�;

and T2� 	 T2��1 $ 3�, T3� 	 T1��1 $ 3�, and T3� 	
T1��1 $ 3�, where 	xx � 1� x. CB 	 2=3 is a color factor
and the contribution from the twist-four wave functions
of the final-state nucleon has also been included. The
functions Gij are defined as

G11 	
1

x1x2x23y2y
2
3 	yy3

;

G12 	
1

x23 	xx
2
1y3 	yy

2
1

�
1

x2x3 	xx21y2 	yy
2
1

�
1

	xx21x
2
3 	yy1y

2
3

�
1

x2x
2
3 	xx1y2y3 	yy3

;

G21 	
1

x21x3 	xx3y
2
1y3 	yy1

;

G22 	
1

x1x
2
3 	xx2y

2
3 	yy2

�
1

x21x
2
3y1y3 	yy1

;

(10)

and ~GG21 	 G21�1 $ 3�, ~GG22 	 G22�1 $ 3�.
To determine the normalization for F2�Q2�, we need to

know the light-cone distribution amplitudes �3, �4, and
�4, which can only be obtained by solving QCD non-
perturbatively. However, the scale evolution of these am-
plitudes selects at the asymptotically largeQ2 the leading
component with a fixed small-xi behavior. For example,
the asymptotic form of �3 is x1x2x3 [11], whereas that of
�4 is x1x2. In Ref. [29] a set of phenomenological ampli-
tudes satisfying these asymptotic constraints has been
proposed on a basis of conformal expansion.

With the above wave functions, the integrals over mo-
mentum fractions xi and yi have logarithmic singulari-
ties, indicating that the factorization breaks down when
one of the quarks in the wave function becomes soft
[19,20]. It has been suggested that the higher-order
PQCD resummation, or the Sudakov form factor, sup-
presses the contribution at small x and provides an effec-
tive cutoff for the integrals at x��2=Q2, where � is a
soft scale related to the size of the nucleon [21–23,31,32].
The outcome is that the xi integrations contribute an extra
Q2-dependent factor log2Q2=�2, compared to F1�Q

2�.
Physically, the end-point divergencies indicate that
quarks with different rapidity contribute equally to the
hard scattering. Since the contribution from quarks with
very large rapidity (small x) is suppressed by the Sudakov
form factor, this Q2 dependence reflects simply the kine-
matic broadening of the quark (and gluon) rapidity range
with increasing nucleon momentum.

For an estimate, we use asymptotic wave functions [29]:

�3 	 120x1x2x3fN; �4 	 12x1x2�fN � '1�;

�4 	 12x1x3�fN � '1�;
(11)
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FIG. 3 (color online). JLab data plotted in terms of the
leading PQCD scaling. The lower, middle, and upper data
points correspond to � 	 200, 200, and 400, respectively.
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with fN 	 5:3� 10�3 GeV2 and '1 	 �2:7�
10�2 GeV2. With a choice of � 	 0:3 GeV, Q6Fp2 �Q

2� is
roughly 0:6 GeV6 for Q2 	 �5–20� GeV2, about 1=3 of
the Jefferson Lab data at Q2 	 5 GeV2 [3]. Of course, to
get a more realistic PQCD prediction in this regime, one
must have the quark distribution amplitudes appropriate
at this scale. However, from the comparison between the
data and PQCD predictions forF1�Q2� [8], we believe that
asymptotic PQCD is unlikely to be the dominant contri-
bution to F2�Q

2� at Q2 	 3–5 GeV2: one must take into
account higher-order corrections and higher-twist effects.

Coming back to the scaling behavior of the ratio
F2�Q

2�=F1�Q
2� for which the Jefferson Lab data have

stimulated much discussion in the literature, PQCD
predicts the power-law scaling 1=Q2. With the new
result for F2�Q2�, we can determine its scaling up to
logarithmic accuracy. The strong coupling constant
in the ratio simply cancels. The wave function evolution
yields a factor of �32=�9(�

s �Q2� for F1�Q
2� and �8=�3(�

s �Q2�
for F2�Q

2� from the leading nonvanishing contribution,
where ( 	 11� 2nf=3. Thus PQCD predicts that
�Q2=log2�8=�9(�Q2=�2��F2�Q2�=F1�Q2�� scales as a const-
stant at large Q2, 8=�9(� � 1. Surprisingly, the Jefferson
Lab data plotted this way [ignoring the small 8=�9(�]
exhibits little Q2 variation for a range of choices of � as
shown in Fig. 3. Since we do not expect the asymptotic
predictions for F1;2�Q2� to work at these Q2, the observed
consistency might be a sign of precocious scaling as a
consequence of delicate cancellations in the ratio. A
more detailed discussion on this issue along with more
thorough phenomenological analyses will be given in a
separate publication.
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