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This paper addresses the drag force and formation of vortices in the boundary layer of a Bose-
Einstein condensate stirred by a laser beam following the experiments of C. Raman et al, Phys. Rev.
Lett. 83, 2502 (1999). We make our analysis in the frame moving at constant speed where the beam is
fixed. We find that there is always a drag around the laser beam. We also analyze the mechanism of
vortex nucleation. At low velocity, there are no vortices and the drag has its origin in a wakelike
phenomenon: This is a particularity of trapped systems since the density gets small in an extended
region. The shedding of vortices starts only at a threshold velocity and is responsible for a large increase
in drag. This critical velocity for vortex nucleation is lower than the critical velocity computed for the
corresponding 2D problem at the center of the cloud.
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Dilute Bose-Einstein condensates have recently been
achieved in confined alkali-metal gases, and the study of
vortices therein is one of the key issues. Raman et al. [1,2]
and Onofrio et al [3] have studied dissipation in a Bose-
Einstein condensate (BEC) by moving a blue detuned
laser beam through the condensate at different velocities.
They found experimentally a critical velocity for the
onset of dissipation. This critical velocity has been related
to the one found by Frisch et al [4] for the problem of a
2D superfluid flow around an obstacle in the framework of
a nonlinear Schrodinger equation: Below a critical veloc-
ity, the flow is stationary and dissipationless while, be-
yond this critical velocity, the flow becomes time
dependent and vortices are emitted. Numerical simula-
tions have been done for this type of problem in 2D [5]
and 3D [6,7]. The direct 3D simulation of [7] shows the
plot of the drag against the velocity and a critical velocity
is numerically computed when the drag becomes non-
zero, but no precise mechanism of vortex nucleation is
described. This critical velocity has been analyzed theo-
retically for a homogeneous 2D system [8] and an inho-
mogeneous 2D system [9,10].

In this Letter, we want to take into account the 3D
geometry of the experiment of [1-3]. The real experi-
ments are quite complex, and, in particular, here we do
not take into account the oscillations and acceleration of
the beam since the analysis is in the frame where the
beam is held fixed. Our aim is to understand the origin of
the drag as well as the mechanism of vortex nucleation in
the boundary region. The analysis of [4] allows one to
understand what is happening in the interior of the cloud,
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where the kinetic energy is negligible in front of the
interaction energy in the Gross-Pitaevskii equation. In
the region where the laser beam crosses the boundary of
the cloud, the sound velocity vanishes, since the ampli-
tude of the wave function becomes small. There, the
kinetic energy term can no longer be neglected in front
of the trapping and interaction terms. We blow up this
region in such a way that the trapping potential varies
linearly with the distance to the boundary and, far away
from the laser beam, the wave function is a solution of a
Painlevé equation. One of our main results is that there is
always a drag around the laser beam and this drag grows
continuously. At low velocity, the drag is not a conse-
quence of the shedding of vortices, and of a time depen-
dent density and velocity field. The origin of this drag is
in the radiation condition for the wave field. This is a
particularity of a trapped system that the density gets
small near the boundary of the trap. Hence, we are in a
regime governed by a linear approximation of the Gross-
Pitaevskii equation where small perturbations can propa-
gate at very low velocities: In the linear case, w is similar
to k?/(2m), so that the group velocity w/k can be very
small. Any object moving in such a system creates a wake
drag (see the Kelvin drag generated by gravity waves
[11]), the kind of drag we observe at low velocity. This
provides a physically interesting example where nonho-
mogeneity plays a crucial role in the propagation of
perturbations. We study the transition toward a time
dependent regime of vortex shedding, which happens at
a critical velocity. The critical velocity that we find is
lower than the 2D critical velocity at the center of the
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cloud coming from the computation of [4], but quite close
to the one found by Anglin [12]. Vortices are nucleated
close to the boundary of the cloud, and the tubes grow and
detach to form rings that move downstream. When tubes
are emitted, significantly large drag values are observed.
The drag increases smoothly as the velocity increases.

The dynamics can be modeled using the Gross-
Pitaevskii equation with an external trapping potential
Vi, = (m/2)(02x* + wly* + wlz?):

ﬁ2
iho, ¥ = — Z—A‘If + (V,, + Ng|¥|?)W.
m

If an object is moved inside the condensate, V;,, has to be
replaced by V,.+V,,, where V,, depends on x — vt.
Based on the experimental data of [1,3], we take a =
mg/4mh?> =2.94nm, N = 1.2 X 107, 0, = w, =377 s
and w, = Aw,, with A = 0.3. We also define the charac-
teristic length d = (i/mw,)"/> = 2.71 wm and a small
nondimensionalized parameter & given by & =
[d/(8mNa)>. We find that & = 6.21 X 1073 which
may be viewed as a small parameter and allow rescaling
the equation near the edge of the condensate. The con-
densate is cigar shaped with the long axis along x. The
(small) laser beam is oriented along z and moves along
the x axis in the plane y = 0. The physical region of
interest here is the boundary region where the laser
beam passes through the region of reduced density. In
this region, the allowed domain is approximated as un-
bounded in the x-y plane. The laser beam is modeled by
an obstacle which is a cylinder C of axis z and radius [ =
0.19 on which ¥ = 0. We will work in the frame where
the obstacle is stationary. By blowing up the boundary of
the cloud near z = 0, and truncating at z = L, the re-
scaled layer thickness, we see that the modulus of the
stationary solution in the boundary layer for large |x| and
|yl, that is far away from the obstacle, is given by the
solution of the first Painlevé equation [13,14]:

p" + zpo — pHp =0,

p(L) = 4/2\/poL,

where p is the rescaled chemical potential and 2,/pyz
is the approximation of the Thomas-Fermi density near
the edge of the condensate. We choose the size of the
boundary layer L so that, on the one hand, L should
be suitably small so that 2z,/p, is a good approxima-
tion for the Thomas-Fermi density in the boundary layer
and, on the other hand, the critical velocity at z = L is
not too different from the critical velocity at the center
of the cloud. The obstacle is now a cylinder of radius
a=1/g"3=5.6.

The obstacle moves at the rescaled velocity v =
Vexp/ (63 R) and, in the frame of the obstacle, the
equation becomes

p(—L) =0,
(D
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—2idu = Au — 2ivdu + (2z/po — lulP)u. (2

We want to understand how solutions of (2) depend on
v. If we restrict (2) to z = L, we can perform an analysis
similar to [4] and get the value of the critical velocity for
the onset of vortex shedding and find v2 = 2./poL/11 =
2¢2/11, where ¢, is the sound velocity. Of course, we
cannot apply this analysis in the low density region,
where the sound velocity is close to 0. Another mecha-
nism has to be found. The rescaled drag around the
obstacle is

1
drag = —j (uyit, — dyu,)dldz. 3)
2 Jc

We first analyze the stationary solution of (2) in the
very low density region, where the system is so dilute that
one can neglect the nonlinear term. In fact, a precise
condition is that p? is less than v?, which gives a trunca-
tion point z, at which p?(z.) = v?. It is rather straight-
forward in classical scattering theory to compute the
perturbed wave field and finally the drag on the obstacle
(a related problem, the scattering of sound by a cylinder,
is treated in [15]). We will find that there is always a drag
whatever the velocity. In the low density region, it is
reasonable to look for u with the following ansatz:

u(x, y, 2) = p@)(x, y)e™. “4)

We can first approximate p(z) in this region by an Airy
function given by the solution of p” + 2zp./py = 0; that
is, by defining Z° = 1/(2,/po), we have

p(2) = \/§Ai<%z>~ \/%_W(_;y/“exp[_a—?z )3/2}
&)

Then, outside the obstacle, ¢ is a solution of the 2D
Helmholtz equation Ay + v?y =0 with =0 for
r = a, the obstacle boundary, and ¢ = ¢/** at infinity.
This solution can be computed [15] in terms of Bessel
functions J;, and N;. One finds that, at leading order for
small v, the 2D drag of ¢ is proportional to

v2J3(v)J1(v)N,(v)/N3(v) ~ v/Inv. (6)

The total drag has to be multiplied by the integral of p?
along the z axis to the truncation point z. defined by
p*(z.) = v2. Direct calculation gives

3

In¥3y’

v Z(‘

2, ~
o 700de C

(N
In conclusion, the total drag tends to zero at low speed. It
is plotted in Fig. 1 (solid line).

We numerically integrate Eq. (2) in a computational
domain of dimension 60 X 60 X L with periodic bound-
ary conditions in x and y and taking # = 0 on the bound-
ary of the obstacle and away from the condensate
(z = —L). At the truncated surface z = L inside the
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FIG. 1 (color online). Drag vs v/c;: — for (7), —O— for
numerical solution of (2); inset: zoomed in for small v.

condensate, we use the condition (9/9z)(u/p) = 0, where
p is the solution of (1). The numerical solution is com-
puted using a continuous piecewise quadratic finite ele-
ment approximation in space and the Runge-Kutta fourth
order in time integration scheme. Using p as an initial
condition, we first compute the solution of (2) for some
time by adding a damping coefficient of order 0.1; that is,
we replace iu, in (2) by iu,(1 + iy). For small velocity,
this effectively drives the numerical solution of (2) close
to a stationary solution. Then, we continue the integration
with a much reduced damping coefficient v = 0.02 or
with no damping at all, y = 0.

In what follows, we will divide the velocity by the
sound velocity at center ¢, = +/2po/&'/?. In Fig. 1, we
plot the drag vs the reduced velocity. For a given velocity,
the drag is obtained through time averaging of (3). We
have verified that, with different small values of vy, the
mean value in long time averaging drag remains the same.
Previous papers (both experimental [1,3,2] and numerical
[7]) display a range of v/c, larger than ours and, hence,
the detailed phenomenon that we show is not visible.

For small v, we find that the solution is almost sta-
tionary. Surface oscillations are present near z = 0, and
the drag is small, but not zero. See Fig. 2 for plots of the
solution. The drag computed in this regime fits very well
to the cubic growth given by (7). There are no vortices in
this regime, even very close to the boundary of the cloud.
One can check that the solution near z = 0 fits very well
with the 2D steady solution of the Helmholtz equation
described earlier, which oscillates in space but has no
vortices.

1< 1<

FIG. 2 (color online). Isosurface snapshot of |u|: almost sta-
tionary solution for v = 0.08 and v = 0.2. z = 0 is the bound-
ary of the cloud, and z > 0 inside the cloud.
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FIG. 3 (color online). Isosurface snapshots of |u| at + = 0.12
and 7 = 0.16, respectively, for v = 0.24: formation of vortex
handles.

When v is increased, at a critical velocity v./c, = 0.2,
the surface oscillations develop into small handles that
move up and down the obstacle without detaching; see
Fig. 3. There is no stationary solution, but no vortex
shedding either: The small handles move up the obstacle
to a critical z value and down. This instability may be
related to the one discussed by Anglin [12]: In our scal-
ing, the critical velocity found in [12] is 0.2. This critical
velocity corresponds to the Landau criterion. At this
stage, the solutions do not produce large drag nor vortex
shedding.

It is only for larger velocities (v/c; > 0.25) that the
handles move up to the top, detach from the obstacle, and

FIG. 4 (color online). A sequence of isosurface snapshots of
|u| for v = 0.28: (a) formation of vortex handles t = 0.04;
(b) detachment from obstacle # = 0.08; (c) bending of vortex
tubes t = 0.12; and (d) formation of vortex half rings t = 0.16.
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produce significant drag. This is a wholly nonlinear phe-
nomenon which cannot be described by a linear analysis.

Let us describe the solutions for v/c, > 0.25 illus-
trated in Fig. 4. The vortex handles seem to first nucleate
near z = 0 and are connected to the obstacle. As time
increases, the bottom ends move away from the obstacle
in a slightly downstream direction while the top end
moves up along the obstacle [Fig. 4(a)]. When the top
ends of the vortices become close to z = L, the bottom
ends reverse their trend of moving away from obstacle.
Instead, they move back to the bottom of the obstacle, as
if the handles prefer certain curvature [Fig. 4(b)].
Eventually, the top ends of the handle move away from
the obstacle and produce a pair of vortex tubes with their
bottom ends at the bottom of the obstacle [Fig. 4(c)]. The
handles merge into a half vortex ring; this half ring
moves both upward and downstream [Fig. 4(d)]. Near
z = 0, the solution can be approximated by the solu-
tion (4) and this solution does not have vortices, so the
instability creates the vortex but the vortex moves away.
Vortex detachment happens only at sufficiently high den-
sity, in the region where the nonlinear term in the equa-
tion dominates. The direction of the vortex displacement
is due to the velocity of the flow and the self-interaction of
the vortex on itself, which gives a movement along its
normal vector. Meanwhile, while the vortex ring starts to
detach from the obstacle, another pair of vortex handles
is forming near the obstacle. The above process repeats
itself. Note that we have truncated the domain close to the
boundary of the cloud, so that the half ring we compute
would correspond to a closed ring in the experiments.

We have to point out that the critical velocity we have
found for the onset of vortex shedding is lower than the
critical velocity for the 2D problem at z = L. In this case
vop/cs = 0.35. The inhomogeneity in the condensate
lowers the critical velocity from the 2D value. One can
check that, for different L, the critical velocity does not
change. This is verified by our numerical computation
where we have used two boxes with one about 50% higher
in z than the other, and there is little change in the drag
plots, nor is there any significant difference in the dy-
namic behavior of the solutions.

In the experiments [1,3,2], the drag is plotted vs veloc-
ity, and a critical velocity can be defined when a sharp
bending is observed in the drag plot. The critical velocity
in is very similar to ours, though slightly smaller. This is
certainly due to the finite extent of the condensate in the
x, y direction. Indeed, our simulations have not taken into
account that the cloud is narrower in the y direction than
along the x. We have checked that, for the 2D problem, the
geometry of a rectangular box consistent with the experi-
ments lowers the velocity by 20%. On the other hand, our
computations indicate that the inhomogeneity in the z
direction and the presence of the laser beam are well
accounted for by our problem.
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We have studied the onset of dissipation in the Painlevé
boundary layer of a BEC when a detuned laser beam is
moved through the condensate. We do a change of frame
and blow up the low density region near the boundary of
the cloud to write the equation for the wave function in
this region: z = 0 is now the boundary of the cloud and
large z is the center. For small velocity, there is a drag
around the obstacle due to radiation, but no vortex is
generated: It is a stationary flow, which is supersonic
near z = (, but subsonic for larger z. On the other
hand, when the critical velocity is reached, the instability
propagates towards the top, a vortex handle is nucleated
and detaches from the obstacle to form vortex rings that
move away. Our aim was to understand the origin of
vortex shedding. The critical velocity is lower than for
the 2D problem. There is a drag for all velocity, it in-
creases smoothly with the velocity, and there is a signifi-
cant increase at the onset of vortex shedding.
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