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We derive exact closed-form expressions for the first few terms of the short-distance Taylor expansion
of the one-body correlation function of the Lieb-Liniger gas. As an intermediate result, we obtain the
high-p asymptotics of the momentum distribution of both free and harmonically trapped atoms and
show that it obeys a universal 1=p4 law for all values of the interaction strength. We discuss the ways to
observe the predicted momentum distributions experimentally, regarding them as a sensitive identifier
for the Tonks-Girardeau regime of strong correlations.
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N �-interacting bosons confined in a length L box with ji ji ji
Introduction.—Even though the correlation functions
for the Lieb-Liniger gas of �-interacting one-dimensional
bosons [1] have been an object of intense research in the
integrable systems community since the late 1970s [2],
the full closed-form expressions are known only in the
Tonks-Girardeau limit of infinitely strong interactions
[3]. While the scaling properties of the long-range [4]
asymptotics of the correlation functions can be derived
from Haldane’s theory of quantum liquids [5], conformal
field theory [6], and quantum inverse scattering method
[2,7], virtually nothing is known about short-range one-
body correlations at finite coupling strength [8]. One of
the goals of this paper is to extend the existing knowledge
in this direction.

The interest to the correlation functions of the Lieb-
Liniger gas has been significantly revived over the past
two years. The few-body local correlation functions for
both weak and strong interactions were computed via new
methods [9–11]. Relevant to the current experiments,
research on correlation functions of a harmonically
trapped gas has been performed in [9,12–14].

It is known that, while for weak interactions the Lieb-
Liniger system is well described by the mean-field
theory, the opposite, Tonks-Girardeau regime of infinitely
strong interactions [15,16] constitutes a strongly corre-
lated system dual to a free Fermi gas. In experiments with
one-dimensional atomic gases [17,18], the one-body mo-
mentum distribution of the gas, along with the density
profiles [19] and phase fluctuations [9,20,21], can readily
help to distinguish between the two quantum regimes. In
the Tonks-Girardeau limit, the momentum distribution
for both free and harmonically confined gases was inves-
tigated by several authors [3,22–24]. In this paper, we
address the question of the momentum distribution in
the intermediate, in between mean-field and Tonks-
Girardeau, regime, as more realistic from the experimen-
tal point of view.

System of interest.—Consider a one-dimensional gas of
0031-9007=03=91(9)=090401(4)$20.00 
periodic boundary conditions. The Hamiltonian of the
system reads
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where m is the atomic mass, and g1D is the one-
dimensional coupling constant, whose expression for
real atomic traps is given in [22]. This Hamiltonian
can be diagonalized via Bethe ansatz [1]. At zero tem-
perature, the energy of the system is given through
E=N � � �h2=�2m��n2e���, where the dimensionless pa-
rameter � � 2=nja1Dj is inversely proportional to the
one-dimensional gas parameter nja1Dj, n is the one-
dimensional number density of particles, a1D �
�2 �h2=mg1D is the one-dimensional scattering length
introduced in [22], and the function e��� is given by
the solution of Lieb-Liniger system of equations [1]:
It is tabulated in [25]. Note the asymptotic behavior
of e��� (first computed in [1]): e��� 
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2, where �! 0 corresponds to the
mean-field or Thomas-Fermi regime, whereas �! 1
corresponds to the Tonks-Girardeau regime.

High-p momentum distribution.—Our first object of
interest is the high-p asymptotics of the one-body mo-
mentum distribution in the ground state. To evaluate it, we
need two mathematical facts, (a) and (b).

(a) The presence of the delta-function interactions in
the Hamiltonian (1) implies that its eigenfunctions
undergo, at the point of contact of any two particles i
and j, a kink in the derivative proportional to the value of
the eigenfunction at this point [26]:

��z1;...;zi;...;zj;...;zN����z1;...;Zji;...;Zji;...;zN�

f1�jzjij=a1D�"�jzjij;fZjig�g

"�jz j;fZ g��O�jz j2�; (3)
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where Zji � �zi � zj�=2 and zji � zj � zi are the center-
of-mass and relative coordinates of the ij pair of
particles, respectively, and fZjig � fZji; z1; . . . ; zi�1;
zi�1; . . . ; zj�1; zj�1; . . . ; zNg denotes a set consisting of
the center-of-mass coordinate of the ith and jth particles
and the coordinates of all the other particles.
090401-2
(b) Imagine that a periodic function f�z�, defined on
the interval ��L=2;�L=2�, has a singularity of the
form f�z� � jz� z0j�F�z�, where F�z� is a regular func-
tion, � > �1 and � � 0; 2; 4; . . . ; then the leading
term in the asymptotics of the Fourier transform of f
reads [27]
Z �L=2
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where k � �2�=L�s and s is an integer. For multiple singular points of the same order, the full asymptotics is the sum of
the corresponding partial asymptotics of the form (4).

Let us evaluate, using (3) and (4), the momentum representation of the ground state wave function of the Hamiltonian
(1) with respect to the first particle:
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Here p1 � �2� �h=L�s, where s is an integer.
Let us now turn to the one-body momentum distribution per se. After a lengthy but straightforward calculation, it

takes the form
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where  2�z1; z2; z01; z
0
2� is the two-body density matrix,

normalized as
R�L=2
�L=2 dz1

R�L=2
�L=2 dz2  2�z1; z2; z1; z2� � 1,

and w�p� is the momentum distribution, normalized asP
�1
s��1 w�2� �hs=L� � 1.
The expression (6) involves the two-body density ma-

trix whose form is unknown for a finite system. However,
an elegant thermodynamic limit formula for  2�0; 0; 0; 0�
does exist due to Gangardt and Shlyapnikov [9], who
derived it using the Hellmann-Feynman theorem
[28]: L2  2�0; 0; 0; 0� � e0���. We are now ready to give
a closed-form thermodynamic limit expression for the
high-p asymptotics of the one-body momentum distribu-
tion for one-dimensional �-interacting bosons in a box
with periodic boundary conditions:
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where W�p� � �L=2� �h�w�p� is normalized asR
�1
�1 dpW�p� � 1. Notice that this asymptotics is univer-

sally described by a 1=p4 law for all values of the cou-
pling strength �. (Note that, for � ! 1, this law was
predicted in [24].) Formula (7) is the first of the two
principal results of our paper.

Harmonically trapped 1D gas: momentum distribu-
tion.—To evaluate the high-p asymptotics of the momen-
tum distribution of atoms confined in a harmonic
oscillator potential, we are going to employ the local
density approximation (LDA). It is based on an intui-
tive, but hard to justify rigorously, assumption that in
the thermodynamic limit the short-range correlation
properties of a trapped gas are indistinct from the
ones of a uniform gas of the same local density:
"�z; z0� 


z�z0�l
"u�z� z0 j n��z� z0�=2��, where "�z; z0�

and "u�z� z0 j n� are one-body density matrix of the
trapped gas and one-body density matrix of a density
n uniform gas, respectively, both normalized to the re-
spective number of particles, n�z� is the density profile
of the trapped gas, and l is the typical length on which
the density changes. [Tested against the exact results on
correlation function of the trapped Tonks-Giradeau gas
[13], this assumption can be shown to lead to an exact
prediction for the value of the coefficient in front of
the �z� z0�2 term in the Taylor expansion around z0 �
�z 
 0.] From this ansatz, it immediately follows that
the high-p asymptotics of the momentum distribu-
tion (sensitive to the short-range correlations only) is
given by the spatial average of the uniform case expres-
sion (7) over the density profile of the atomic cloud. The
density profiles themselves can also be obtained using
LDA [ [19], Eqs. 21 and 22, where the governing pa-
rameter % should be replaced by 2=�0

TF, see below], and
this is the method we used. The final result is presented in
Fig. 1. There the dimensionless coefficient �HO �
limjpj!1W�p�p4=� �hn0�3 in front of the high-p asymp-
totics of the momentum distribution is plotted as a func-
tion of the interaction strength parameter �0 in the center
of the cloud; �0 in turn depends on of the experimental
090401-2
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FIG. 1. Dimensionless coefficient �HO��
0� in front of the

leading term of the high-p asymptotics of the momentum
distribution of harmonically trapped atoms, as a function of
the interaction strength �0 in the center of the cloud. Also
shown is the directly related to the experimental parameters
Thomas-Fermi estimate �0

TF � �8=32=3��Nma21D!= �h�
�2=3 for

the interaction strength in the center, as a function of �0.
Both momentum and momentum distribution are measured
in units related to the density in the center n0, that can be
expressed through �0 using �0 � 2=n0a1D.
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parameters, such as the number of particles N, the cou-
pling constant g1D, and the longitudinal trap frequency!,
through a system of implicit equations [19]. Here n0 is the
density in the center of the trap, and HO stands for the
‘‘harmonic oscillator.’’ To establish a link to the experi-
mental parameters, we also present a plot for the Thomas-
Fermi (weak interactions) prediction for � in the center
of the atomic cloud, �0

TF � �8=32=3��Nma2!= �h��2=3, as a
function of �0.

In the limiting, Thomas-Fermi and Tonks-Girardeau
regimes, the momentum distribution is given by
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where aHO � � �h=m!�1=2 and pHO � �h=aHO.
Short-range expansion for the correlation function.—

Let us now redirect our attention to the ground state one-
body correlation function,

g1�z� � h�̂�y�z��̂��0�i; (9)

and, in particular, to its Taylor expansion around zero:

g1�z�=n � 1 �
X1
i�1

cijnzj
i: (10)

In the limit of infinitely strong interactions �! 1, this
expansion is known to all orders [3]: cTG1 � 0; cTG2 �
���2=6�; cTG3 � �2=9; cTG4 � �4=120; . . . . Our goal
090401-3
now is to obtain the first few (through the order jzj3)
coefficients of the expansion (10) for an arbitrary inter-
action strength �.

The knowledge of the momentum distribution (7) is
crucial for determining the c1 and c3 coefficients. Let us
look at the relation between the momentum distribu-
tion and the correlation function, where the former is
simply the Fourier transform of the latter: W�p� �
�2� �hn��1

R
�1
�1 dz e

�ipz= �hg1�z�. Since the leading term in
the asymptotics of W�p� is 1=p4, we may conclude, using
the Fourier analysis theorem (4), that the lowest odd
power in the short-range expansion of the correlation
function g1�z� is jzj3, and therefore the jzj term is absent
from the expansion:

c1 � 0: (11)

Furthermore, the theorem (4) allows one to deduce the
coefficient c3 from the momentum distribution (7):

c3 �
1

12
�2e0���: (12)

To obtain the coefficient c2, we employ the Hellmann-
Feynman theorem [28] again. Let a Hamiltonian
ĤH�w� depend on a parameter w. Let E�w� be an eigen-
value of this Hamiltonian. Then the mean value of the
derivative of the Hamiltonian with respect to the parame-
ter can be expressed through the derivative of the
eigenvalue: h�E�w�j

d
dw ĤH�w�j�E�w�i �

d
dw E�w�. Let us

now denote the fraction �h2=m as ( and differen-
tiate the Hamiltonian (2) with respect to (. Accord-
ing to the Hellmann-Feynman theorem, we get
1
2

R�L=2
�L=2 dz�@

2=@z @z0�h�̂�y�z��̂��z0�ijz0�z � dE=d(. Now,
using h�̂�y�z� �̂��z0�i � h�̂�y�z� z0� �̂��0�i, we obtain
� 1

2L��d
2=dz2�g1�z��jz�0 � dE=d(, and, finally,

c2 � �1
2fe��� � �e0���g; (13)

where we have used the known expression for the energy
given above.

Note that, as expected, our expressions for the coeffi-
cients c1�3 converge, in the limit �! 1, to the known
[3] listed above results for the impenetrable bosons. This
can be easily verified using the � ! 1 expansion for the
function e��� given above.

Expressions (11)–(13) constitute the second principal
result obtained in our paper.

Concluding remarks.—Below, we present a discussion
on empirical observation of and application for the 1=p4

momentum distribution tails, in experiments with har-
monically trapped atomic gases.

We would like to note that the 1=p4 law predicted in
our paper corresponds to the values of momentum large
as compared to the inverse correlation length p�
�m)= �h2�1=2, where ) is the chemical potential. The law
should persist at finite temperatures, but the prefactor
given above will be valid only for small temperature:
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For higher temperatures, the value of prefactor can be
corrected via methods developed in [10].

We believe that the coefficient in front of the high-p
tail of the momentum distribution (Fig. 1) may provide a
robust experimental identifier of the quantum regime of
the gas of interest, and, in particular, serve to detect the
Tonks-Girardeau regime. (i) The high-p tail is not sensi-
tive to the finite temperature corrections to the correlation
function, which appear predominantly in the low-p
(long-range) domain. (ii) In experiments with 2D optical
lattices, where a single cigar-shaped trap is replaced by an
array of traps [17], the effect of the residual 3D mean-
field pressure acting during the expansion becomes rele-
vant: The high-p part of the momentum distribution is far
less sensitive to this effect as compared to the low-p part.
(iii) The theoretical interpretation of the experimental
results is simpler in the high-p case thanks to the appli-
cability of the LDA. In the opposite low-p case, the LDA
leads to entirely wrong predictions [29].

Summary.—In this paper, we present a short-
range Taylor expansion (up to the order jzj3) for the
zero-temperature correlation function g1�z� of a one-
dimensional �-interacting Bose gas [see Eqs. (10)–(13)].
We compute the leading term in the high-p asymptotics of
the momentum distribution for both free [Eq. (7)] and
harmonically trapped (Fig. 1) atoms.We regard the high-p
tail of the momentum distribution as an efficient tool for
identification of the Tonks-Girardeau regime in experi-
ments with dilute trapped atomic gases.
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