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We propose an operational measure of distance of two quantum states, which conversely tells us their
closeness. This is defined as a sum of differences in partial knowledge over a complete set of mutually
complementary measurements for the two states. It is shown that the measure is operationally invariant
and it is equivalent to the Hilbert-Schmidt distance. The operational measure of distance provides a
remarkable interpretation of the information distance between quantum states.
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space of operators. It is unclear how to impose an opera-
tional interpretation on the Hilbert-Schmidt distance.

Mutually complementary measurement.—Two mea-
surements are mutually complementary if precise
Introduction.—Mathematical formulations of all the
fundamental physical theories are based on the concept
of an abstract space. The structure of the space and
the theories is defined by its metric. For example, the
Minkowski metric defines the mathematical structure of
the special theory of relativity and the Rieman metric
defines the structure of the general theory of relativity. In
quantum mechanics, the Hilbert-Schmidt distance may
be the natural metric of the Hilbert space. What are the
fundamental laws which dictate the metrics in physical
theories? This question is investigated in this paper for
the case of quantum theory and the Hilbert-Schmidt
distance.

When two quantum states are given, what do we do to
measure how close they are? This is an important issue in
various investigations of quantum mechanics. For ex-
ample, we need to measure how close the teleported state
is to the original state in order to check the credibility of
the quantum teleportation protocol. Other examples ap-
pear in quantum cloning, quantum state reconstruction,
and practical quantum gate operation [1]. We need a
measure of closeness, depending on the kind of informa-
tion process involved. In particular, two measures have
been applied to the wide realm of quantum information
processing: fidelity [2] and Hilbert-Schmidt distance [3].
These measures are equivalent to each other if the sys-
tems are in pure states.

The fidelity, F � jh j�ij2, is the transition probability
between two pure states, j i and j�i. When the fidelity
is extended to incorporate mixed states [2], its inter-
pretation becomes vague in an operational perspective.
Instead, the fidelity may be indirectly interpreted in
terms of statistical distance or ‘‘statistical distinguish-
ability’’ in the measurement that optimally resolves
neighboring density operators [4]. On the other hand,
the Hilbert-Schmidt distance is a metric defined on the
0031-9007=03=91(8)=087902(4)$20.00 
Another possible measure of closeness is quantum rela-
tive entropy which has also been proposed as a candidate
for a measure of entanglement [5,6].

A quantum state is a representation of our knowledge
on individual outcomes in future experiments [7]. We
can, then intuitively, say that the difference between
this knowledge for two quantum states measures how
much the two states are ‘‘close to each other’’ with respect
to the future predictions. Bohr [8] remarked that
‘‘. . . phenomena under different experimental conditions,
must be termed complementary in the sense that each is
well defined and that together they exhaust all definable
knowledge about the object concerned.’’ This suggests
that the closeness of two quantum states should be defined
with regard to a complete set of mutually complementary
measurements. We require that such a measure of close-
ness between two states is invariant under the specific
choice of a complete set of mutually complementary
measurements.

In this Letter, we introduce a measure of distance
between two quantum states, which conversely tells
us the closeness. The measure of distance is operation-
ally defined as a sum of the differences in partial knowl-
edge over a complete set of mutually complementary
‘‘unbiased’’ measurements. The measure has several re-
markable properties. (i) The measure is operationally
invariant: It is uniquely defined, being independent of
the specific choice of a complete set of complementary
measurements. (ii) The measure is equivalent to the
Hilbert-Schmidt distance. (iii) The operational measure
of distance can be interpreted as an information distance
between two quantum states. In addition, the fact that the
operational measure is equivalent to the Hilbert-Schmidt
distance suggests that the intrinsic structure of Hilbert
space reflects information-theoretical foundations of
quantum theory.
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knowledge in one of them implies that all possible out-
comes in the other are equally probable [9]. Consider a
nondegenerate and orthogonal measurement A repre-
sented by a set of eigen projectors fÂAig. Suppose a quan-
tum system in d-dimensional Hilbert space is prepared in
such a state that the outcome in the measurement A can be
predicted with certainty; for instance, the system’s den-
sity operator is given by �̂� � ÂAi. Let B be another non-
degenerate and orthogonal measurement represented by a
set of eigen projectors fB̂Big. For a given state (density
operator) ÂAi, the probability of an outcome j in the
measurement B is given by pjji � TrB̂BjÂAi. The measure-
ment B is mutually complementary to A if outcomes of
measurement B are equally probable:

pjji �
1

d
; 8i; j � 1; 2; . . . ; d: (1)

A set of complementary measurements is a complete set if
the measurement operators can expand any density op-
erators on the Hilbert space [see Eq. (13)]. For a spin-1=2
system, such a complete set of complementary measure-
ments is associated with three Pauli spin operators
f�̂�x; �̂�y; �̂�zg.

Definition of operational distance.—Consider two
quantum systems of the d-dimensional Hilbert space.
In order to indicate how close their density operators �1

and �2 are to each other, we consider a complete set
of mutually complementary measurements M � fm�g
which are nondegenerate and orthogonal. Consider a
measuring device set up with the observable for measure-
ment m� and let fm̂m�;ig be the set of the eigen operators
and fp�;i � Tr�m̂m�;i�̂�	g be the set of probabilities corre-
sponding to the outcomes for a given density operator �̂�.
The measurement is performed independently and equiv-
alently for each quantum system and its probability vec-
tor is denoted as ~pp��S	 for system S. The distance of the
two probability vectors, ~pp��1	 and ~pp��2	, is defined as

D���̂�1; �̂�2	 � j ~pp��1	 
 ~pp��2	j
2: (2)

The distanceD� is called a single operational distance for
measurement m� among a complete set of mutually com-
plementary measurements. The total operational distance
may be defined by summing single operational distances
over the complete set of complementary measurements:

Dtotal��̂�1; �̂�2	 �
X
�

D���̂�1; �̂�2	: (3)

Number of complementary measurements.—Consider a
Hilbert-Schmidt space B of bound operators for a system
S in d-dimensional Hilbert space H d, in which the inner
product of ÂA; B̂B 2 B is defined as [10]

�ÂAjB̂B	 � TrÂAyB̂B: (4)

The space B forms a d2-dimensional vector space where
each element is an operator. A Hilbert-Schmidt norm of ÂA
is given by kÂAk2 � �ÂAjÂA	. For operator space B, one may
choose a complete orthogonal basis set in terms of
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Hermitian operators, Bo � f�̂��; for � � 0; 1; . . . ; d2 

1g, such that �̂�0 � 1 and ��̂��j�̂��	 � d���. The ortho-
gonality implies that each �̂�� for � � 0 is traceless:
Tr�̂�� � 0.

A Hermitian operator ĤH and a density operator �̂� of S
are represented by the observable basis set Bo as

ĤH �
h0
d

1 �
1

d

Xd2
1

��1

h��̂��; (5)

�̂� �
1

d
1 �

1

d

Xd2
1

��1

���̂��; (6)

where h0 � TrĤH, h� � Tr�̂��ĤH, and �� � Tr�̂���̂�. Here
�0 � 1 due to the unit trace of a density operator. In
particular, we call ~�� � ��1; �2; . . . ; �d2
1	 a generalized
Bloch vector. Because Tr�̂�2 � 1, the norm of ~�� is upper
bounded: j ~��j2 � d
 1. If �̂� is pure, j ~��j2 � d
 1. The
generalized Bloch vectors stay within a Bloch sphere SB
of radius

������������
d
 1

p
. However, not all generalized Bloch

vectors within SB correspond to density operators, imply-
ing there is no one-to-one correspondence between den-
sity operators and generalized Bloch vectors within the
Bloch sphere SB. In fact, the set of Bloch vectors specify-
ing density operators is restricted by the positivity of
density operators such that a given density operator �̂�
should hold

��̂�j�̂�	 � 0 , ~�� � ~�� � 
1; (7)

for any pure density operator �̂� with j ~��j2 � d
 1.
We shall derive a condition of mutual complementarity

with respect to generalized Bloch vectors. Consider two
measurements A and B of fÂAig and fB̂Big, respectively. The
orthogonality and the completeness relation of fÂAig raise
relations among their generalized Bloch vectors f ~aaig as,
noting that ÂAi has unit trace,

T rÂAiÂAj � �ij ! ~aai � ~aaj � d�ij 
 1; (8)

Xd

i�1

ÂAi � 1 !
Xd

i�1

~aai � ~00; (9)

where ~00 is a null vector. Similar relations hold for the
generalized Bloch vectors f ~bbig of the measurement B. The
condition (1) of mutual complementarity between A andB
is now written as

~aa i � ~bbj � 0; 8i; j � 1; 2; . . . ; d: (10)

This condition implies that the subspace spanned by f ~aaig
is orthogonal to that by f ~bbig within SB when A and B are
mutually complementary.

The subspace spanned by f ~aaig is �d
 1	 dimensional
due to the constraints in Eqs. (8) and (9). Further, the set
satisfies an overcompleteness relation in the subspace as

1

d

Xd

i�1

~aai ~aai � 1d
1; (11)

where ~aai ~aaj is a tensor product of two vectors ~aai and ~aaj
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and 1d
1 is an identity matrix in the subspace. Noting
that the Bloch space is �d2 
 1	 dimensional, it can be
divided into �d� 1	 subspaces in �d
 1	 dimension. For
the d-dimensional Hilbert space H d , there are thus
�d� 1	 measurements that are mutually complementary
and they form a complete set of complementary measure-
ments. We note here that, even though a pair of mutually
complementary measurements always exists, the exis-
tence of a complete set needs to be investigated in the
virtue of the condition (7) and was constructed explicitly
for d being a prime or a power of a prime number [11].
This finding does not, however, exclude a possibility to
find a complete set of mutually complementary measure-
ments for other dimensions. To avoid any confusion, we
are concerned with quantum systems in dimensions of
prime numbers and their powers.

We present a nontrivial example of d being a prime
number for a complete set of mutually complementary
measurements [11]. Consider a measurement which is
represented by a basis set fj�0

j i � jjig and further d
measurements, among which the �th measurement is
represented by the basis vectors

j��
j i �

1���
d

p
Xd

k�1

exp��2!i=d	��k2 � jk	�jki; (12)

for j � 1; 2; . . . ; d. One can verify that each of these
�d� 1	 basis sets is orthonormal and that all the basis
sets are mutually complementary.

Equivalence to Hilbert-Schmidt distance.—We shall
derive one of the main results that the total operational
distance is equivalent to the Hilbert-Schmidt distance.
Let M be a complete set of �d� 1	 complementary mea-
surements. For m� 2 M with eigen projectors fm̂m�;ig, let
~mm�;i be the generalized Bloch vector of m̂m�;i. Because

the set f ~mm�;ig is overcompleted in the Bloch space due
to Eq. (11),

1

d

Xd�1

��1

Xd

i�1

~mm�;i ~mm�;i �
Xd�1

��1

1�d
1 � 1d
2
1; (13)

where 1�d
1 is a projection matrix onto the �th subspace
and 1d2
1 is an identity matrix in the Bloch space.

We obtain a single operational distance explicitly by
complementary measurement m� 2 M and the total op-
erational distance for given two density operators �̂�1 and
�̂�2. For a measurement m� 2 M, the single operational
distance is given by Eq. (2) as

D���̂�1; �̂�2	 �
1

d2
Xd

i�1

j ~mm�;i � � ~���1	 
 ~���2	�j2; (14)

where ~���S	 is a generalized Bloch vector for the system S.
Summing up the single operational distances over the
complete set of complementary measurements, the total
distance is obtained by Eq. (3) as

Dtotal��̂�1; �̂�2	 � k�̂�1 
 �̂�2k
2; (15)

where we have used the completeness relation (13).
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We remark some properties of the total distance Dtotal.
First, the total distance is invariant to the specific choice
of a complete set of complementary measurements. In
fact, in deriving Eq. (15), no particular set of comple-
mentary measurements has been chosen. Second, the total
distance is equal to the Hilbert-Schmidt distance of the
two operators �̂�1 and �̂�2 in the Hilbert-Schmidt space B.
Third, the total distance is bounded:

0 � Dtotal � 2: (16)

where the bound values 0 and 2 are obvious as shown later
in Eq. (21).

Relation between operational distance and information
content.—Brukner and Zeilinger [12] introduced the total
information content of a quantum system in the density
operator �̂� and it was successfully applied for entangle-
ment teleportation [13], state estimation [14], and a cri-
terion for the violation of Bell’s inequalities [15]. Their
measure can be written as

I��̂�	 � Nk�̂�
 �̂�rk
2; (17)

where N is a normalization factor and �̂�r �
1
d1 is a

completely random state. Comparing Eq. (17) with
Eq. (15), the total information content I��̂�	 can be de-
scribed in terms of the total operational distance
Dtotal��̂�; �̂�r	 such that I��̂�	 indicates the distance of the
quantum state �̂� from the completely random state �̂�r.
The more information a density operator �̂� contains, the
further it is away from �̂�r. Reciprocally, the total opera-
tional distance between two density operators �̂�1 and �̂�2,
Dtotal��̂�1; �̂�2	, describes a difference in their information
contents. These results imply that the total operational
distance can be interpreted as an information distance
between two quantum states.

Comparison with fidelity.—In the following discussion,
we compare the total operational distance with the fidel-
ity. The fidelity has been commonly employed for a
measure of closeness in quantum information processing.
The fidelity F is defined by [2]

F��̂�1; �̂�2	 � �Tr
�����������������������������
�̂�1

p
�̂�2

������
�̂�1

pq
	2; (18)

for two density operators �̂�1 and �̂�2. The fidelity is
bounded by its definition: 0 � F � 1. The two density
operators are exactly the same if F � 1, and they are
completely different if F � 0. Note for the total opera-
tional distance that two operators are equal if D � 0 and
they are completely different if D � 2.

One may compare a set of test density operators f�̂�g to a
reference density operator �̂� so as to find out which
density operator is the closest to �̂�. For that purpose, let
us denote the fidelity as F�̂���̂�	 � F��̂�; �̂�	 for a reference
density operator �̂�. Similarly, D�̂���̂�	 � Dtotal��̂�; �̂�	.

Consider a measure M� ~qq	 of physical quantities f ~qqg.
The measure M establishes the ordering of physical
quantities such thatM� ~qq1	 � M� ~qq2	 � � � � . Another mea-
sure N� ~qq	 of physical quantities is equivalent toM� ~qq	 ifN
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is a monotonic function of M, in other words, if the
ordering is either preserved [N� ~qq1	 � N� ~qq2	 � � � � ] or
completely reversed [N� ~qq1	 � N� ~qq2	 � � � � ]. The fidelity
F�̂� is equivalent to the total operational distance D�̂� over
a set of test density operators T for a reference �̂� if, for
each pair of two test density operators �̂�1; �̂�2 2 T,

F�̂���̂�1	 � F�̂���̂�2	 , D�̂���̂�1	 � D�̂���̂�2	: (19)

Further, the fidelity F is equivalent to the total distanceD
over a set of test density operators T for a set of reference
density operators S if F�̂� is equivalent to D�̂� for any
reference �̂� 2 S.

If the set of test and reference density operators is
confined to pure states, the fidelity is equivalent to the
total operational distance. Note that for a set of pure states
the fidelity is given by the Hilbert-Schmidt inner product
of two density operators �̂� � j�ih�j and �̂� � j�ih�j in
Eq. (4):

F�̂���̂�	 � Tr�̂� �̂� � ��̂�j�̂�	: (20)

Further,

D�̂���̂�	 � P��̂�	 � P��̂�	 
 2F�̂���̂�	; (21)

where P��̂�	 � k�̂�k2 is the purity of �̂�. As P��̂�	 � P��̂�	 �
1, it is clear in Eq. (21) that the total operational distance
is a monotonic function of the fidelity.

The total operational distance is, however, inequiva-
lent to the fidelity as general mixed states are concerned.
For simplicity, let a reference be a pure state, �̂� � j�ih�j,
and let P��̂�	 be the purity of a test state �̂�. In this case, the
fidelity F���	 is written as in Eq. (20) and the total
distance is given as in Eq. (21) with P��̂�	 � 1. Now the
total distance is not just a function of F�̂���̂�	 but also a
function of P��̂�	. As F and P are independent quantities
over a set of test states f�̂�g, the equivalence (19) no longer
holds.

Quantum tomography and operational distance for a
qubit.—As an example to obtain the operational distance
in an experiment, we consider quantum tomography on
light fields which are an ensemble of polarization degrees
of freedom [16]. The tomographic experiment obtains
Stokes parameters by four intensity measurements [17]
(i) with a filter that transmits 50% of the incident radia-
tion regardless of its polarization, (ii) with a polarizer
that transmits only horizontally polarized light, (iii) with
a polarizer that transmits only light polarized at 45� to
the horizontal axis, and (iv) with a polarizer that trans-
mits only right-circularly polarized light. The latter three
cases are propositions for a complete set of mutually
complementary measurements for a polarization qubit.
Thus, the operational distance of two ensembles of light
fields may be estimated using the tomography setup.

In summary, we proposed a measure to find how close
two quantum states are. This is operationally defined with
respect to a complete set of mutually complementary
measurements. It was shown that the operational measure
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is equivalent to the Hilbert-Schmidt distance, which im-
plies that our result can also be understood as an opera-
tional determination of the Hilbert-Schmidt distance.
The measure provides a remarkable interpretation as an
information distance between quantum states. The com-
parison with the fidelity shows that the measure is not
necessarily equivalent to the fidelity.
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[6] H. Umegaki, Ködai Math. Sem. Rep. 14, 59 (1962).
[7] E. Schrödinger, Naturwissenschaften 23, 807 (1935); in

Quantum Theory and Measurement, edited by J. A.
Wheeler and W. H. Zurek (Princeton University Press,
Princeton, 1983).

[8] N. Bohr, Atomic Physics and Human Knowledge (Wiley,
New York, 1958).

[9] B.-G. Englert, in Foundations of Quantum Mechanics,
edited by T. D. Black, M. M. Nieto, H. S. Pilloff, M. O.
Scully, and R. M. Sinclair (World Scientific, Singapore,
1992); M. O. Scully, B.-G. Englert, and H. Walther,
Nature (London) 351, 111 (1991).

[10] M. Reed and B. Simon, Methods of Modern Mathe-
matical Physics (Academic, London, 1980), Vol. 1.

[11] W. K. Wootters and B D. Fields, Ann. Phys. (N.Y.) 191,
363 (1989); I. D. Ivanovic, J. Phys. A 14, 3241 (1981).
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