
P H Y S I C A L R E V I E W L E T T E R S week ending
22 AUGUST 2003VOLUME 91, NUMBER 8
Scalings of Domain Wall Energies in Two Dimensional Ising Spin Glasses
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We study domain wall energies of two dimensional spin glasses. The scaling of these energies
depends on the model’s distribution of quenched random couplings, falling into three different classes.
The first class is associated with the exponent � � �0:28; the other two classes have � � 0, as can be
justified theoretically. In contrast to previous claims, we find that � � 0 does not indicate d � dcl but
rather d � dcl , where dcl is the lower critical dimension.
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length scale. The standard way to measure this exponent
is via the change in the system’s free energy when going

distributions P	J
 that include a continuous part (we see
later that this class includes certain discrete distributions
Spin glasses [1] exhibit many subtle phenomena such as
diverging nonlinear susceptibilities, aging, and memory,
making it a real challenge to understand these materials.
In spite of much work, there is still no consensus even on
the nature of the frozen order in equilibrium. More sur-
prising still, the case of two dimensions also is not
completely understood. In particular, the scaling of the
stiffness, a cornerstone of spin glass theory, is different
when the spin-spin couplings are of the form Jij � �1
compared to when they have a Gaussian distribution [2].
This has been confirmed since using more powerful nu-
merical techniques [3,4], and in fact it was interpreted in
[4] as a lack of universality, but this is unexpected and
unexplained. Here we solve this puzzle: we find that
different types of quenched disorder lead to three distinct
behaviors. In particular, we motivate why the class of
models that includes the case Jij � �1 gives for the
stiffness exponent � � 0, and we explain what � tells us
about the lower critical dimension.

The model, its properties, and our methods.—The
model consists ofN � L2 Ising spins Si � �1 on a simple
square lattice with periodic boundary conditions. The
Hamiltonian is

H � �
X

hiji

SiJijSj; (1)

where the sum runs over all pairs of nearest neighbors hiji
and the Jij are the quenched random spin-spin couplings.
We consider different distributions of these couplings, all
of which are symmetrical about J � 0. We begin with
continuous distributions; most common is the one where
the Jij are Gaussian random variables with zero mean and
unit variance. After that we investigate discrete distribu-
tions; the most common distribution of this type has Jij �
�1 with equal probability.

An important feature of spin glass ordering is the spin
glass stiffness; the corresponding exponent � describes
how excitation free energies scale with the associated
0031-9007=03=91(8)=087201(4)$20.00 
from periodic to antiperiodic boundary conditions. At
T � 0 this reduces to measuring the difference

�E � E	P

0 � E	AP


0 ; (2)

where E	P

0 and E	AP


0 are the ground state energies for the
system with, respectively, periodic and antiperiodic
boundary conditions, say, in the x direction. We are inter-
ested in the probability distribution of �E when consid-
ering an ensemble of Jij and in the scaling law of its
standard deviation �E:

�E �
L!1

L�: (3)

Measurements of � in two dimensional spin glasses (see,
for instance, [2]) give � � �0:28. However, for the Jij �
�1 distribution, Hartmann and Young [4] recently
showed that �E remains of O	1
 for increasing L, imply-
ing that in this case � � 0. In dimension d above the
lower critical dimension dcl we have � > 0 and spin glass
ordering is stable against thermal fluctuations. On the
contrary, when � < 0, thermal fluctuations prevent spin
glass ordering. Because of this, the authors of [4] con-
jectured that dcl � 2 for the Jij � �1 model. We shall see
that dcl should be identified with the highest value of d
where � � 0, and so in fact dcl � 2:5 as believed before
the study in [4].

In this work we address these questions by first deter-
mining numerically the properties of P	�E
 and then by
using the real space renormalization group picture. For
the first part, we compute the ground states of our systems
using a heuristic algorithm [5]. In practice, when the
lattice is not too large (L � 80), the algorithm returns
the ground state with a high level of confidence for all of
the distributions we consider in this work. The problem is
to reduce the statistical errors enough; in practice we used
a few tens of thousands of samples at a few values of L for
each case.

Class 1: ‘‘continuous’’ distributions.—We first focus on
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also). When L is sufficiently large, �E can then take on
arbitrary values. The value of � for continuous distribu-
tions is well known only for Gaussian Jij; in fact, we are
aware of no tests of universality in d � 2, though the
standard lore is that both � and the shape of P	�E
 are
universal [2].

In a first series of runs we obtained P	�E
 and �E
for the model with Gaussian couplings. Then we moved
on to a continuous yet singular probability density P	Jij
:
P	Jij � J
 � fP1	J
 � 	1� f
P2	J
, where P1	J
 �
�e	J�1
2=2 � e	J�1
2=2�=

�������
8�

p
, P2	J
 � ��	J� 1
 � �	J�

1
�=2, and f is a measure of the height of the distribution
at J � 0. We refer to this P	Jij
 as the broadened bimodal
(BB) distribution since it reduces to the Jij � �1 distri-
bution when f � 0.

In Fig. 1 we show �E as a function of L when P	Jij
 is
(i) a Gaussian of zero mean and unit variance (GAUSS
data); (ii) the BB distribution, with f � 0:1 (BB 0:1 data);
(iii) as in (ii) but with f � 0:2 (BB 0:2 data); (iv) Gaussian
but with the part in the interval ��0:5; 0:5� forced to be 0
(HOLE data). Note that this last distribution has a large
gap around Jij � 0. In the Gaussian case the power law
scaling of �E can be determined with good accuracy
already from quite small lattices; fits to these data lead
to � � �0:282� 0:004, in agreement with previous work.
The distributions (ii), (iii), and (iv) give rise to a similar
scaling, albeit only at larger L values. We have also
considered other distributions such as P	Jij
 uniform in
��1:5;�0:5� [ �0:5; 1:5� (notice that this distribution also
has a gap around J � 0), obtaining similar results. It thus
seems very reasonable to expect that all distributions
with a continuous part will lead to the same exponent,
� � �0:28.

A second universality issue concerns the shape of
P	�E
. In the inset in Fig. 1 we show the probability
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FIG. 1. �E as a function of the system size for four different
Jij distributions. Straight lines are best one-parameter fits of
the form const� L�0:282. Inset: the probability distribution
P	j�Ej=�E
 at L � 40 for three of these distributions.
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density P	j�Ej=�E
 when L � 60 for the BB 0:1, BB
0:2, and GAUSS data: the different data sets basically
coincide within statistical errors, strengthening the claim
that in this class the distribution of domain wall energies
is universal (the curve displayed is just to guide the eye).

Class 2: quantized energies.—At variance with the
former distributions, the Jij � �1 model leads to �� 0
[4]. We show in Fig. 2 that in this model �E saturates
quickly as L grows. Is the Jij � �1 model a special case,
a class on its own? The crucial point is that the possible
�E values are quantized: �E is always a multiple of a
quantum Q; here Q � 4. This led us to consider distribu-
tions other than the �1 one with this same quantization
property. We begin by ‘‘diluting’’ the Jij � �1 model,
setting Jij � 0 with probability 0:2. The main effect of
this is to reduce the quantum from 4 to 2; indeed, the
local fields now can take the value 0; 1; 2; 3; 4 instead of
0; 2; 4. In Fig. 2 we see that for this model [diluted (DIL)
data] �E seems to saturate, so again � � 0. However, the
convergence is slow. In any renormalization group picture
this convergence is governed by a ‘‘correction to scaling’’
exponent !. We assume � � 0 and that the asymptotic
value of �E is a nonzero constant given by the J � �1
data; then we fit the DIL model to the form:

�E	L
 � �E	L � 1
 � AL�!: (4)

with A and ! adjustable parameters. We have also con-
sidered distributions where Jij � �J1 or �J2 with equal
probability (we have studied the cases J2=J1 � 1:5, 2,
and 3). Again we find the convergence to be slow but
fits as in (4) work well; furthermore, all the estimates
of ! are similar, being in the �0:4:0:6� interval. All
these facts justify the claim that � � 0 whenever �E is
quantized.

Just as in the continuous case, to analyze the shape of
the distribution of �E we must choose a scale; the correct
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FIG. 2. �E=Q (top) and P	�E � 0
 (bottom) as a function of
the system size for three discrete Jij distributions: �1 (PM1),
diluted �1 (DIL), and �1, �2 (PM1PM2).
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FIG. 3. The integrated probability distribution for �E=�E in
the Gaussian case, in the two BB cases, and in the irrational
J2=J1 case (L � 60). Inset: binned probability distribution of
�E=�E for the irrational case (IRR), L � 60.
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choice is to compare the histograms after measuring all
energies in units of the basic quantum Q. To test whether
the histograms for the different Jij distributions become
identical in the large L limit, we plot in Fig. 2 (lower
panel) the probability P	�E � 0
 to find a zero energy
domain wall. The data suggest that the histograms be-
come identical in the large L limit; i.e., they support
universality. [Following Eq. (4), we fix the asymptotic
value ofP	�E � 0
 to be that given by the J � �1 model,
and then we determine !; in the plot we show these fits;
they are all good and the values of ! are close to 0:5.] We
have checked in detail that this claim applies to the
quantized distributions mentioned before and to the DIL
model with 10% dilution.

Class 3: quantized energies revisited.—So far we have
considered only situations with even values of L. If L is
odd (and Jij � �1), the possible values of �E=J are
�2;�6;�10; . . . . The quantum Q is still the separation
between the energy values, but the positions of the histo-
gram entries are different (in particular, �E � 0 is not
allowed). A somewhat trivial consequence of this is that
necessarily � � 0 as �E=Q is greater or equal to 1=2 for
all L. Consider now the question of the universality of the
histograms. We have checked within our error bars that
the large L limit of P	�E=Q
 for the Jij � �1 model is
the same as that obtained using the J2=J1 � 3 model (still
with L odd, of course). This kind of quantization thus
gives rise to a third class, again with � � 0.

Could there be further classes with quantized energies?
Since we have imposed reflection symmetry of the dis-
tribution of the Jij, the only possible histograms are the
two we discussed: �E is a multiple of the quantumQ or of
the form 	n� 1=2
Q, where n is integer. If the universal-
ity class depends only on the possible histogram types,
then no other classes arise.

Discrete does not mean quantized.—Let us also con-
sider the case where the couplings are discrete but where
there is no quantization. We consider the distribution
P	J
 � 1

4 ��	J� J1
 � �	J� J2
� (IRR for ‘‘irrational’’
hereafter), where J1 � 1 and J2 � 	1�

���
5

p

=2 � 1:618

is the golden mean. Clearly, we have �E � 2	nJ1 �
mJ2
, where n and m are integers. Since J2=J1 is irratio-
nal, the set of possible �E values becomes dense when
L! 1 and so it is natural to conjecture that this P	Jij

leads to domain wall energies in class 1. Our findings are
that �E decreases with L and shows no sign of saturation,
and a power law fit gives � � �0:29� 0:01, the value
associated with class 1. Our conjecture is thus substanti-
ated by these findings.

The convergence of P	�E=�E
 to its limit is more
problematic: for finite L, the distribution is the sum of
a finite number of delta functions: we can only hope to
have a ‘‘weak convergence’’ to the P obtained with the
Gaussian couplings. In these conditions it is appropriate to
consider the integrated probability distribution �<	X
 �R
X
�1 P	�E=�E
d	�E=�E
. In Fig. 3 we plot �< for the
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irrational and for some continuous cases. The plots are
very similar, supporting the claim that the discrete dis-
tribution IRR leads to domain wall energies in class 1. We
have also included P	�E=�E
 as an inset in Fig. 3: we
have used a small bin size that allows one to observe the
complex structure.

The case of hierarchical lattices.—The effect of hav-
ing quantized �E can also be studied on hierarchical
lattices. One advantage is that one can study very large
sizes; a second is that one can access a continuous range
of dimensions. We have focused on Migdal-Kadanoff
lattices [6]; these are obtained by recursively ‘‘expand-
ing’’ graphs. Starting with one edge connecting two sites,
one replaces it by b paths in parallel, each composed of s
edges in series, leading to bs new edges. This procedure is
repeated hierarchically; after G ‘‘generations’’ the dis-
tance between the outermost spins is L � sG, while the
number of edges of the lattice is 	bs
G. The dimension of
these lattices is d � 1� ln	b
= ln	s
. One puts an Ising
spin on each site and a coupling Jij on each edge. Periodic
boundary conditions simply imply that the two end spins
must have the same value, and from this we define �E.
The probability distribution of �E can be followed from
G to G� 1. The recursion equations for P	�E
 make
sense for any s [7]: s can be an integer but it can also
be any positive real value. One may then compute � for an
interval of dimensions, using either continuous Jij (for
instance, to check universality [8,9]) or quantized Jij
couplings (our focus here).

In Fig. 4 we show � as a function of dimension d (s is
variable, b is fixed and set to 3). We show the values for
continuous distributions and for when the quantization is
of the form of class 3. As expected, if in one class � > 0,
all classes lead to the same value of �; i.e., quantization is
irrelevant when the energy scale diverges. However, as
soon as � < 0 in the continuous case, quantization gives
087201-3



-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0.5 1 1.5 2 2.5 3 3.5 4

θ 
( 

d 
)

 d 

QUANTIZED
CONTINUOUS

FIG. 4. � as a function of d for a one-parameter family of
Migdal-Kadanoff lattices; we display two sets of data points,
one for continuous Jij distributions, the other for quantized
distributions.

P H Y S I C A L R E V I E W L E T T E R S week ending
22 AUGUST 2003VOLUME 91, NUMBER 8
rise to a histogram fixed point distribution in which the
j�Ej are concentrated on the few lowest values and � � 0.

Similar results are obtained for class 2 quantization but
there is an interesting difference. Indeed, since �E can be
zero in this class, one sees two further fixed points. An
obvious one is associated with having P	�E � 0
 � 1;
i.e., all domain wall energies vanish. It is easy to see that
this fixed point is stable and has � � �1; there is no spin
glass stiffness, and the system is paramagnetic even at
zero temperature. The other fixed point is unstable and
has � � 0. What is the interpretation of these two extra
fixed points? To allow �E to be zero, one can think of the
diluted model where some of the bonds have Jij � 0.
Clearly, when the dilution is strong enough, the nonzero
bonds will no longer percolate and we are in a strongly
paramagnetic phase; the renormalization group (RG)
flow in this phase takes one to the P	�E � 0
 � 1 fixed
point. On the contrary, at low dilution, we are in a spin
glass phase and the RG flows are towards the other stable
fixed point. On the boundary of these two phases, the RG
flows take one to another fixed point which is unstable: it
is associated with the paramagnetic to spin glass transi-
tion as dilution is decreased. Such considerations have
previously been developed for d � 3 Migdal-Kadanoff
lattices [10].

Finally, we see that it is appropriate to define the lower
critical dimension dcl from the end point of the � � 0
curve; � � 0 on its own does not signal d � dcl .

Discussion.—Our numerical evidence of universality
[for both � and P	�E=�E
] is very strong for continuous
and related distributions (see Figs. 1 and 3). But we also
find universality classes when �E is quantized. This clas-
sification is substantiated by the behavior of � and of the
087201-4
fixed point distributions of domain wall energies in
Migdal-Kadanoff lattices. It is appropriate, however, to
be cautious and to remark that the correction to scaling
exponent ! we measure [see Eq. (4)] is small, ! � 0:5.
Because of that we are not able to completely exclude the
Bray and Moore expectation that �E	L � 1
 � 0 [11].
Our most extensive data are for the model DIL with f �
0:2. Here our fits give �E	L � 1
=Q � 0:49	1
 while if
we force �E	L � 1
 � 0, the $2 of the fit increases by
2:3; thus, �E	L � 1
 � 0 is not excluded by our data
though it appears as much less likely.

What is the source of the universality we observe? In
the Migdal-Kadanoff lattices, the renormalization group
transformation is clear and so the different classes are
very natural. For the Euclidean lattices the existence of a
renormalization group transformation for �E has not been
established, but since our data point to universality, it
should be possible to define such a transformation. Note
that its fixed point [and thus P	�E=�E
] will depend on
the aspect ratio and on the fact that we use periodic
boundary conditions. Our P	�E
 are thus a priori not
comparable to those of [4], where one of the directions
had free boundary conditions.
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