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We study the buckling of thin elastic plates caused by residual strains concentrated near a free edge.
This is a model for plant leaves and torn plastic sheet morphologies. We derive new governing equations
explaining self-similar patterns reported earlier in experiments. We reveal the cascade mechanism,
determine the bounds for its wavelengths, and predict a similarity factor of 3 in agreement with
experiments. This is confirmed by numerical solutions with up to five generations of wrinkles.
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Self-similar structures are ubiquitous in nature.
Examples range from snowflakes to turbulent flows. The
complexity of such structures often prevents their full
physical understanding: turbulence [1], for instance, is
still the subject of numerous investigations. In some
cases, self-similarity arises from minimization of the
system energy, as in ferromagnetic materials [2,3] or in
martensitic phase transitions [4]. In a recent paper [5],
self-similar wrinkles were observed along the edge of
torn plastic sheets and along the edge of plant leaves. Such
plastic sheets exhibit a cascade of wrinkles with wave
numbers k, ak, a’k, a’k, ..., with the self-similarity
factor measured as a =~ 3.2. Plastic flow near the crack
tip or enhanced tissue growth near the leaf edge stretches
a thin rectangular strip of material along the boundary.
Wrinkling allows relaxation of the resulting strain [6].
This is reminiscent of the buckling of thin films under
strong compression [7-9], although the physics turns out
to be different (different energy scalings, role played by
embeddings, . ..). While the wrinkles observed in experi-
ments are often self-similar [5], a precise account of such
patterns based on the equations of elasticity is still lack-
ing. Preliminary attempts based on the theory of elastic
rods could account for wrinkling [10,11] but not for self-
similarity. In this Letter, we address this problem starting
from the full equations for elastic plates. We uncover the
mechanism responsible for the cascade and fully charac-
terize its self-similar structure: we predict « = 3 and
determine the cutoff wavelengths. Our results are sup-
ported by numerical calculations showing up to five gen-
erations of wrinkles. Incidentally, we give a numerical
answer to the existence of embeddings, an open problem
in the differential geometry of surfaces [12]. We believe
that the present work will extend to other systems where
metric properties are important, as in general relativity,
and where patterns follow from energy minimization.

In this Letter, we consider a thin elastic sheet with a
stretched edge. In contrast to classical plates, its natural
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configuration is described by a non-Euclidean 2D metric:
ds?> = (1 + g(y))*dx* + dy?, (1)

where (x, y) are coordinates such that the stretched edge is
at y =0 (Fig. 1). We use a Lagrangian description, as
usual in elasticity, the reference state being parametrized
by (x, y). When g(y) = 0 in Eq. (1), the reference planar
configuration is in unstable equilibrium due to a compres-
sive strain €,, = —g(y). The aim of the present work is to
study relaxation of these stresses by buckling.

Such a metric accounts for stretched edges, as obtained
in torn plastic sheets or in plant leaves. The form (1) of the
metric is the most general one that is invariant along the
edge direction x [13]. We shall not try to explicitly relate
the metric profile g(y) to microscopic features (plasticity,
cell growth) of these systems, but instead consider this
model problem in its full generality and take g(y) as
given. We shall retain only two physical features of g: it
is negligible far away from the edge y = 0 and varies over
a small characteristic length. In torn plastic sheets, this
small length scale comes from the regularization of di-
vergent elastic stresses near the crack tip.

We derive the equations of elastic equilibrium for
plates with a stretched edge by extending the classical
theory [14] to account for g(y). Deformations of thin
plates can be decomposed into bending and stretching.
Because of the small parameter 4/R, the ratio of the
thickness to the typical extent of the plate, bending costs
much less energy than stretching, and purely flexural
deformations are preferred. Such deformations may or
may not exist depending on the form of g(y). They exist
provided one can find a surface in the usual 3D Euclidean
space whose metric coincides with (1), as it yields a
configuration with zero stretching energy. This geomet-
rical question is classically referred to as finding (iso-
metric) embeddings of an abstract manifold with metric
(1) in R3.
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FIG. L

An elastic plate buckles into a self-similar pattern due to residual strains near the edge (inset). Numerical solution for

thickness & = 2.9 X 107>, width 1, metric perturbation g(y) = 1/(1 + y/£), € = 0.008, yielding wavelength 27/k = 0.54.

Despite its simplicity, the existence of embeddings for
arbitrary g(y) remains an open question [12]. As a result,
one does not even know the structure of the lowest energy
configurations of a sheet with a stretched edge, nor the
order of magnitude of its elastic energy. We will give a
numerical answer to this question and discuss in detail
the structure of equilibrium configurations.

We first derive our plate model. Let u(x, u), v(x, y), and
{(x, y) be, respectively, the x, y, and z components of the
displacement. In the small slope and small in-plane dis-
placement approximations, the 2D strains of the mean

&= [/dxdy(z(lthvz)

where E and v are the Young’s modulus and the Poisson
ratio of the material. The first term in the integral is the
stretching energy &, built upon the in-plane stresses given
above while the second term is the bending energy.

We restrict our analysis to periodic solutions in the
direction x parallel to the edge. The wave number k in
this direction will later be selected by energy minimiza-
tion. Fourier components are denoted using a superscript
[¢], where the integer ¢ tags the harmonic. Applying the
Parseval formula to the stretching energy yields
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where the numbers A?]'f: , were computed from Eg. (2).
The bending energy inv(i) was transformed similarly.
The equilibrium equations, obtained by variation with
respect to u, v, and £, are not given here as they have no
analytical solutions in general—even the simpler prob-
lem of finding an embedding, i.e., of solving €;; = 0 for

el e

where brackets (f) = f1% denote averages over x.

The stretching energy appearing in Eq. (4) has a simple
geometric interpretation. Gauss’s theorema egregium
states that Gaussian curvature K is conserved by embed-
dings. In the limit |g| < 1, the Gaussian curvature asso-
ciated with metric (1) is K(x, y) = —g"(y), while for a
profile {(x, ), it reads K(x, y) = {.{,, — {3,. Therefore,
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surface read €, = u, + {3/2 — g(y), €, = v, + 3/2,
and €, =(u,+v,+{,{,)/2, where f, stands
for df/dx. The Foppl-von Karman (FvK) equations
for plates are built upon this form of the strains [14]
in the simpler particular case g(y) = 0. These equa-
tions have been the subject of renewed interest in the
context of singularities [15—17]. Here, the presence of
g(y) in €,, favors configurations close to the natural
metric (1) rather than developable ones as for classical
plates.

For small g(y), strains remain small and Hookean
(linear) elasticity leads to the following energy [14]:
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i, j = x,y, has no general solution. Their numerical solu-
tion is also difficult because of the small parameter //R,
of the high order of derivation, and of the number of
unknown functions (u, v, {).

To circumvent these difficulties, we introduce an ap-
proximation that leads to a fast numerical implementation
of the buckling problem and allows for simpler analysis
while leaving unchanged the salient features of the sys-
tem. The elastic energy [stretching energy in Eq. (3) plus
similar bending energy] is a quadratic form of the Fourier
components EE;?](y) and £19)(y). Instead of minimizing the
full quadratic form, we set to zero some suitably chosen
components and minimize with respect to the remaining
ones. We chose to set to zero the components egcx] = 0 and
6%] = 0 for ¢ > 0, which yields ¥ and v in terms of
{(x,y) directly: the benefit of the approximation, dis-
cussed at the end of this Letter, is that ¥ and v can be
eliminated from the energy functional (2), hence one
unknown function remains instead of three. This leads
to the following energy in terms of {(x, y) only:
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no stretching €,, = €,, = €,, = 0 (£, = 0) corresponds
to £y — {3y = —&"(y). The first Fourier compo-
nent of this last equality integrated twice with respect
to y yields ({3/2) = g(y), while any nonzero Fourier
component g reads {{ ., — 2,11 = 0; one recognizes

the stretching terms in Eq. (4). This shows that our
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stretching energy penalizes any deviation from an em-
bedding and, conversely, that embeddings have no
stretching energy. Our approximation scheme is specifi-
cally designed to respect embeddings in this sense and, to
our knowledge, it is the first one having this key property.
The elastic energy (4) is invariant when g(y) and the
other quantities [£(x, ¥), h,...] are rescaled by an overall
factor G:g(y) = g(y)/G, { = {/~/G,.. . This shows, sur-
prisingly, that the self-similar solutions obtained below
may exist for arbitrarily small perturbation g(y) of the flat
metric, provided the plate is thin enough. In the follow-
ing, the energy is minimized with respect to the funda-
mental wave number k and to the Fourier components
[19l(y) of the deflection (¢ = 0, 1,2, ...). This minimiza-
tion is based on 1D finite elements for the functions
[9(y) (0 = g = gpae)- The particular form of our energy
leads to a very efficient implementation allowing inter-
active calculations and solution tracking (Figs. 3 and 4).
By numerical minimization of the elastic energy (4)
we obtained self-similar solutions with up to five gener-
ations of wrinkles (Fig. 1). They were found to be absolute
minima of energy when g(y) is peaked near y = 0 with a
small length scale there (see introduction). The cascade is
generated by period tripling, and exhibits the wave num-
bers k, 3k, 9k, 27k, and 81k. We now explain this period
tripling using symmetries. The reflection invariance {
—¢ in the plate Eq. (4) leads to the coupling of odd
Fourier components ([4)(y) only. As a result, the self-
similarity factor & must map odd integers to odd inte-
gers: this leaves only odd integers (o = 3, 5, etc.) as
eligible values. Our simulation shows that o = 3 yields
the lowest energy, although solutions for & = 5 do not
cost much more. This compares well with the experimen-
tal a = 3.2 reported in Ref. [5]. The slight discrepancy
can be attributed to experimental nonlinearities of the
order of 1 while |g| < 1 here. Moreover, a factor a close
to 5 has indeed been observed in some experiments [18].
From the form of the stretching energy in Eq. (4), self-
similar solutions are invariant under the transform:
g89y) _ ¢
Ve Ve
&)
where we restrict our analysis to the case a = 3. This
invariance is confirmed by the collapse of numerical
functions £19(y) (Fig. 2). Note that the fixed-point func-
tion of the collapse is not universal and depends on g(y).
The order of magnitude of the fundamental wave num-
ber k is given by the macroscopic extent of the plate (its
width in our simulations and in experiments). This gives
the largest wavelength of the solution. Its smallest wave-
length is determined by a mechanism analyzed below.
The cascade takes place over all intermediate scales by
successive period tripling.
Regularization of the wrinkles at very small scales is
due to bending effects, which penalize short scale oscil-
lations. Let A be the smallest wrinkling wavelength, and
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FIG. 2. Fourier components (l9(y) (¢ =1,3,9,27) of the
deflection for a numerical self-similar solution with four gen-
erations (inset) and their collapse using transform (5). A(y)
need not collapse away from the stretched edge (i.e., large y).
Same parameters as in Fig. 1, except for h = 2.9 X 1074,

€ = |g(0)/g'(0)| be the small length scale induced by g(y)
near the edge. The cutoff A is found by balancing stretch-
ing and bending energies at scale A. For the metric used in
the simulations of Fig. 3, this yields A ~ h%/5¢3/5, in
agreement with the numerics. Incidentally, this formula
shows that a cascade requires a small scale € in the metric:
if € is too large, only one wavelength is present.

Our plate model and its numerical implementation
provide insights into the physical structure of the self-
similar solutions. Earlier papers suggested that the
mechanism responsible for the cascade is essentially
geometric [5,6]: embeddings with a single wavelength
would disappear when € becomes small enough and be
replaced by embeddings made of wrinkles with many
wavelengths. According to this scenario, the bifurcation
would take place for purely geometrical reasons. In direct
contrast, we show below that self-similar solutions are
selected by flexural effects: the interplay between elas-
ticity and geometry is essential.

To demonstrate this, we considered a one-parameter
family of functions g,(y), and tracked solutions minimiz-
ing the total elastic energy while € was varied. As shown
in Fig. 4, when the small length scale € is decreased, the
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FIG. 3. Numerical check of scaling law A ~ h2/3¢3/5: small-
est wavelength A in the cascade versus plate thickness & (left
panel) and metric typical length € (right panel) for the family
of metric perturbations g.(y) = 1/(1 + y/€). Thick lines
are best power-law fits, yielding exponents 0.38 and 0.62,
respectively.
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FIG. 4. Total elastic energy of solutions with one to four
generations of wrinkles for the one-parameter family of met-
rics g¢(y) = 1/(1 + y/€). Unit of energy is the bending modu-
lus [i.e., the prefactor of the bending energy in Eq. (2)].
Bifurcations occur while all branches remain close to embed-
dings: they are selected by minimization of bending energy.

lowest energy configuration bifurcates from a single
wavelength (1) to a cascade of wrinkles by successive
period tripling (up to “1 + 3 + 9 + 27”"). Remarkably, all
these configurations were found numerically to converge
to embeddings in the limit 2z — 0 [19]. This shows that,
for a given g,(y), there exist many embeddings, one of
which is made up of oscillations at a single length scale
while others are a superposition of wrinkles with many
wavelengths. This rules out the possibility of a merely
geometrical selection. Among these several embeddings,
self-similar configurations are selected because their
bending energy is smaller. Indeed, near the edge, the
curvature along the x direction is of the order of /A2,
while that along y is of the order of {/€>. To minimize
stretching, the boundary almost has its natural length,
hence ¢~ A+/g(0). The density of bending energy
ER*g(0)(1/A 4+ A/€?)? is therefore minimum when A ~
€. Qualitatively, this means that small wavelengths are
favored near the boundary, hence the cascade.

This mechanism and all the main findings of this
Letter are robust with respect to the approximations used
to derive our plate energy (4). The small slope approxi-
mation in our definition of strains (as in the FvK equa-
tions) is justified by our finding of self-similar solutions
for small g(y), hence for small strains and slopes. Con-
cerning the additional constraints put on some of the
strain components to simplify the form of the energy
functional, we stress that (i) this approximation respects
embeddings, thereby avoiding overestimation of the en-
ergy by a large factor [8], a difficulty that can arise in
poorer approximation schemes; (ii) that for some particu-
lar configurations we have relaxed these constraints and
resorted to the classical FvK equations without observing
qualitative changes in the resulting patterns, but at the
price of a much higher CPU usage; (iii) that our main
findings summarized below are robust and still hold for
the full FvK equations, as can be checked directly.
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We have explained the formation of self-similar wrin-
kles in elastic plates with a stretched edge as follows. In a
first (geometrical) step, configurations are restricted to
embeddings to avoid a strong penalization by the stretch-
ing energy; this problem is degenerate: many profiles are
possible, as shown numerically. In a second (elastic) step,
self-similar wrinkles are selected due to the presence of a
small characteristic length € near the edge. The invariant
magnification factor & = 3 was predicted, in agreement
with experiments. The bounds for the wavelengths present
in the cascade were determined. Unexpectedly, self-
similar patterns can be found for arbitrarily small g(y)
(G invariance), so that the cascade is not due to strong
nonlinearities. We have pointed out a new mechanism by
which the underlying non-Euclidean metric properties of
a physical system generates self-similar patterns.
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