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Interface Profiles near Three-Phase Contact Lines in Electric Fields
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Long-range electrostatic fields deform the surface profile of a conductive liquid in the vicinity of the
contact line. We have investigated the equilibrium profiles by balancing electrostatic and capillary
forces locally at the liquid vapor interface. Numerical results show that the contact angle at the contact
line approaches Young’s angle. Simultaneously, the local curvature displays a weak algebraic divergence.
Furthermore, we present an asymptotic analytical model, which confirms these results and elucidates
the scaling behavior of the profile close to the contact line.
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FIG. 1. (a) Geometrical setup. Unless stated otherwise,
length and height of the box were 80. See text for further
details. (b) cos��A� vs cos��Y�. Symbols: numerical results (for
saturate typically around 30 , thereby limiting the maxi-
mum force that can be generated in microfluidic or other

the five smallest values of �A, the box size was increased to
500). Solid line: prediction of Eq. (1), assuming �A � �L.
The rapid developments in biotechnology and combi-
natorial chemistry create an increasing demand for mi-
crofluidic devices that allow for precise control and
manipulation of tiny amounts of liquids [1]. Recently,
new strategies have been developed for open microfluidic
systems, i.e., systems that are characterized by the pres-
ence of solid-liquid-vapor or solid-liquid-liquid triple
lines [2,3]. In this approach, manipulation of liquids relies
on the presence of gradients in interfacial tensions that
are switchable via an external control parameter. Electric
fields are arguably the most interesting choice as a control
parameter, because of their flexibility, high switching
rates, and little power consumption. In particular, the
electrowetting effect attracts considerable attention
[3–8]. Electrowetting amounts to the fact that the contact
angle of partially wetting conductive liquids on insulat-
ing substrates can be reduced by applying a voltage U
between the liquid and a counterelectrode on the sub-
strate, which is covered by a thin insulating layer
[cf. Fig. 1(a)]. If combined with suitably patterned coun-
terelectrodes, net forces can be exerted in order to move
liquid droplets on the surface.

Electrowetting is well understood as long as the applied
voltage is low. On a macroscopic scale, i.e., sufficiently far
away from the contact line, the voltage dependence of the
contact angle is given by the so-called Lippmann equa-
tion, e.g., [5],

cos�L � cos�Y � �; (1)

where �L is the Lippmann contact angle and �Y is Young’s
contact angle. � � "0"rU2=�2
d� is a dimensionless
number representing the ratio of electrostatic and capil-
lary forces. 
 is the surface tension of the liquid. "r and d
are the dielectric constant and the thickness of the insu-
lating layer, respectively. "0 is the electric susceptibility
of vacuum. At high voltage, however, the standard model
of electrowetting fails. Instead of decreasing to zero as
predicted theoretically, the contact angle is found to

�
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applications. A variety of mechanisms were proposed in
order to explain contact angle saturation [6–8]. Most of
them attribute a crucial role to the divergence of electric
fields close to the wedge-shaped edge of the droplets.
However, a deeper understanding of these saturation ef-
fects has been hampered thus far, because the geometry of
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the liquid surface in the vicinity of the contact line was
not known [6,7].

In the present Letter, we present a new numerical
approach that allows us to calculate in a self-consistent
manner both the field distribution and the equilibrium
surface profiles close to the contact line. We find that the
contact angle approaches Young’s angle in the immediate
vicinity of the substrate, even at high voltage when the
Lippmann angle is small. At the same time, the surface
curvature diverges algebraically with an exponent �1<
�< 0. The numerical results are explained by an asymp-
totic analytical model.

The geometry of our system is shown in Fig. 1(a). The
liquid, which is translationally invariant in one direction,
is connected to a reservoir at zero pressure. In the follow-
ing, all length scales will be normalized to the thickness
d of the insulator. The electrical potential is � � 0 both
for the liquid and on the top of the simulation box. At the
bottom electrode, the dimensionless electrical potential
� � 1 is applied (normalized by the applied voltage U).
On the left-hand edge of the box, Dirichlet boundary
conditions were specified with � corresponding to an
infinite parallel plate capacitor partially filled with a
dielectric. Point A was kept fixed throughout the calcu-
lations at a height of 40 above the substrate, whereas the
contact line (point B) was allowed to relax. In order to
calculate the equilibrium surface profile, we followed an
iterative procedure. Initially, we began with a straight
liquid vapor interface with a slope corresponding to the
asymptotic angle �A. For this geometry, the field distri-
bution was calculated by solving numerically the equa-
tion r � 	"�r� � r�
 � 0 (where " � 1 in the gas phase
and " � "r in the insulating layer) outside the liquid with
the boundary conditions as specified above [9]. Since the
electric field E � �r� vanishes inside the liquid, the
Maxwell stress acting on the surface is given by 	el �
"0E2=2. In mechanical equilibrium, this stress must be
balanced by the capillary pressure 	cap � 
�, where � is
the local curvature of the surface. If we describe the
surface profile by a function x � f�y�, mechanical equi-
librium requires that

�
f00�y�

�1� f0�y�2�3=2
�

�
"r

�r��2: (2)

This equation can be obtained from a variational mini-
mization of the free energy of the system [10]. Equation
(2) was integrated numerically using � as obtained
above, with the initial conditions that the profile emerges
in point A with a slope corresponding to �A. Thus, we
obtained a new (curved) profile f�y�, which was used
again to calculate � via r � 	"�r� � r�
 � 0 for the
next iteration step. Good convergence was obtained after
typically ten iterations. Unless stated otherwise, we used
"r � 1. For other values of "r, qualitatively similar re-
sults were obtained.
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Any profile obtained from this procedure represents the
mechanical equilibrium for a given set of parameters "r,
�, and �A. In order to relate �A to Young’s angle �Y for a
given system, we calculated the free energy F, which, in
units of 
d2, is given by

F�"r; �; �A� � � cos��Y�L�
Z B

A
dS�

�
"r

Z
V1

dV�r��2

� �
Z
V2

dV�r��2: (3)

Here, L is the normalized length of the solid-liquid inter-
face. The second term on the right-hand side gives the
contour length of the mechanically equilibrated surface
profile f�y�. The last two terms represent the electrostatic
field energies in the gas phase (V1) and inside the dielec-
tric layer (V2), respectively. The thermodynamic equilib-
rium configuration is calculated by minimizing F with
respect to �A. As a result, we found that �Y and the
equilibrium value of �A are indeed related via Eq. (1);
i.e., �A � �L [see Fig. 1(b)]. The fact that the Lippmann
equation is recovered as a result of the numerical proce-
dure confirms the accuracy of the calculations. We point
out that the Lippmann relation was found to hold within
the numerical accuracy down to the smallest angles in-
vestigated (�A;min � �L;min � 5�); i.e., we find no indica-
tion for electrostatically induced contact angle saturation
at high voltage. This result is in contrast to previously
published conclusions, which were based on a simplified
model [7].

In the following, we will focus on the behavior of the
surface profile in the vicinity of the contact line.
Figure 2(a) shows a series of profiles for various values
of �. Obviously, their curvature in the vicinity of the
contact line increases with increasing �. In order to
minimize numerical errors, �A was kept constant
throughout these calculations. This implies that each
profile corresponds to a different value of �Y . In order
to investigate the asymptotic behavior of the surface
profiles in more detail, we define the normalized deriva-
tive

� �
f0�y� � cot �Y
cot �A � cot �Y

: (4)

By virtue of this definition, � ! 1 for f0�y� ! cot��A� �
cot��L�, and � ! 0 for f0�y� ! cot��Y�. Figure 2(b)
shows � for the same data as in Fig. 2(a). Far away
from the contact line, � ! 1 for all the profiles, due to
the boundary condition at point A. Because of the long
range nature of the electrostatic forces, the profiles ap-
proach the Lippmann angle only very slowly—in fact
algebraically, as we will see below. Therefore, there is
no well-defined height above which the Lippmann angle
is reached. For practical purposes, however, deviations
become negligible for y � 1. Close to the contact line
(i.e., for y ! 0), � approaches zero for all the profiles. The
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FIG. 2. (a) Equilibrium surface profiles. (�A � 60�; � � 0:2,
0.4, . . . , 1.0; "r � 1). (b) Normalized slope � of the surface
profiles vs height [parameters as in (a)]. Note the logarithmic
scale on the abscissa. The dashed horizontal lines at � � 0 and
at � � 1 correspond to �Y and �A, respectively.
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asymptotic contact angle at the contact line in electro-
wetting is thus given by Young’s angle �Y , independent of
both the applied voltage and "r. This suggests that there is
no electrostatic force acting at the contact line, although
the electric field is expected to diverge close to the con-
tact line.

In order to understand this finding on a more funda-
mental basis, we investigated the asymptotic behavior
of the electrostatic pressure. A logarithmic plot of
�r��2jx�f�y� [Fig. 3(a)] shows that 	el diverges algebrai-
cally for y ! 0; i.e., 	el / y�. The exponent � decreases
slightly with increasing �. In all our calculations, we
found �1< �< 0. The squares and triangles in
Fig. 3(b) represent the values � for "r � 1 and "r � 2,
respectively.

The origin of this algebraic behavior for y � 1 can
also be understood analytically. On a length scale much
smaller than 1, the geometry can be approached by a
perfectly conductive wedge with an opening angle � on
an infinitely thick dielectric layer (below, we will also
recover analytically that � � �Y). For this geometry, the
Laplace equation can be solved analytically in polar
coordinates r, ’. If the wedge occupies the range 2��
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�< ’< 2�, we have " � "r for 0<’<� and " � 1
for �<’< 2�� �. The boundary conditions are � �
0 for’ � 0 and for’ � 2�� �. Furthermore,Dy andEx
are continuous for ’ � � (with D � "0"E being the
dielectric displacement). The solutions of the Laplace
equation can be decomposed into eigenmodes �n �
r!n sin�!n’�, where !n must satisfy the condition

"r tan	!n��� ��
 � tan�!n�� � 0: (5)

For the special case "r � 1, this simplifies to
sin	!n�2�� ��
 � 0 or !n � n�=�2�� ��, as found
in standard textbooks [11]. For r ! 0, the mode with n �
1 dominates [12]. It is easily seen that 1

2<!1 < 1 for
physically meaningful values of "r and �. Since 	el /
�r��2, we recover 	el / r�, with � � 2�!1 � 1�, i.e.,
�1< �< 0 as obtained before numerically. The dashed
lines in Fig. 3(b) represent numerical solutions of Eq. (5)
(note that there is no fitting parameter). Thus, both the
electric field as well as the electric pressure diverge
algebraically. However, the divergence is rather weak.

Since the surface profiles obey Eq. (2), we also
have f00 / r� and thus f0 / const� r��1 for r ! 0, with
0< �� 1< 1. Hence, the curvature of the profiles di-
verges while the asymptotic slope (and thus �) remains
finite [13].

The above results imply that the divergence of 	el is
weaker than a delta function. Under these conditions, a
rigorous variational calculation shows that the local con-
tact angle � should indeed be equal to Young’s angle [14],
as found above numerically [Fig. 2(b)]. This conclusion
may also be verified explicitly by analyzing the force
balance at the contact line. The electrostatic force Fel
acting on the contact line can be found by integrating
	el over some finite range "r along the surface profile,
and then considering the limit "r ! 0. Hence,

Fel / lim
"r!0

Z "r

0
	el�y�dy: (6)

Since 	el scales as "r�, we have Fel / "r��1. Since ��
1 > 0, Fel vanishes for "r ! 0; i.e., the electrostatic force
does not contribute to the force balance at the contact line.
The only forces acting on the contact line are the inter-
facial tensions. Therefore, � must indeed be equal to �Y .

These results should also be of interest to the dynamics
of electrowetting. In the absence of electric fields, there
are two mechanisms affecting the dynamics of (partial)
wetting: viscous dissipation inside the liquid droplet and
frictional dissipation at the moving contact line [15]. For
volatile liquids, such as water, it was also suggested that
local evaporation and condensation processes affect the
contact line dynamics [16]. It is widely accepted that the
value of the contact angle, at the contact line, has a strong
influence on the friction of the moving contact line. In the
case of dynamic electrowetting, earlier studies assumed
that the geometry close to the contact line is given by a
straight wedge, with an opening angle equal to �L [17].
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FIG. 3. (a) �r��2 / 	el vs height. Note the algebraic
behavior for y ! 0. (b) Exponent � of 	el for various values
of � � �Y . Triangles: numerical results for "r � 1; circles:
numerical results for "r � 2. Dotted and dashed lines: values
corresponding to the solutions of Eq. (5) for "r � 1 and "r � 2,
respectively.
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As we showed above, neither of these assumptions is true.
It will be interesting to study the corrections that arise if
the actual equilibrium geometry is incorporated into
these dynamic models.
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