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Effective Mass of Two-Dimensional 3He
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We use structural information from diffusion Monte Carlo calculations for two-dimensional 3He to
calculate the effective mass. Static effective interactions are constructed from the density and spin-
structure functions using sum rules. We find that both spin and density fluctuations contribute about
equally to the effective mass. Our results show, in agreement with recent experiments, a flattening of
the single-particle self-energy with increasing density, which eventually leads to a divergent effective
mass.
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physical excitation spectrum is obtained by finding the transforms, ~VVs�k� � � d rVs�r�e ; correspondingly,
Two-dimensional liquid 3He is particularly interest-
ing because it is, even at zero temperature, not self-bound
and can, therefore, be studied in a wide density range.
Although governed by one of the simplest Hamiltonians
for realistic many-body systems, 3He exhibits a wide
range of delicate and complex phenomena which have,
by and large, been resilient to an understanding from the
underlying Hamiltonian. Only recently, Monte Carlo
techniques have moved to a point where structural prop-
erties have been understood from first principles [1,2].

Low-energy dynamical properties of 3He at low tem-
peratures are phenomenologically described by Landau’s
Fermi-liquid theory, which establishes relationships
between observable quantities such as the specific heat,
the compressibility, and the magnetic susceptibility.
Understanding the so-called Fermi-liquid parameters in
3He has therefore been a recurring issue in theoretical
low-temperature research. The calculation of Fermi-
liquid parameters in terms of Feynman diagrams is op-
erationally well defined, but the execution of the theory
from an underlying microscopic Hamiltonian is far too
complicated to be practical. Hence, many attempts have
been made to explain the features of Fermi-liquid pa-
rameters within semiphenomenological models [3–5].

We examine in this Letter physical effects contributing
to the effective mass in two-dimensional 3He. This work
is motivated by a recent sequence of measurements [6]
that seem to indicate a Mott-Hubbard transition in quasi-
two-dimensional 3He atomic monolayers. Technically,
our calculations correspond to those of Refs. [7,8], but
we use as much information as possible from accurate
ground state Monte Carlo simulations.

The relevant quantity for the effective mass is the
single-particle propagator G�k;!� in the vicinity of the
Fermi surface. It is expressed in terms of the proper self-
energy ���k;!� through the Dyson equation [9]

G��0 �k;!� �
���0

�h!� t�k� ����k;!�
; (1)

t�k� � �h2k2=2m is the free single-particle spectrum. The
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poles of the Green’s function in the �k;!� plane. Several
steps are involved in constructing practically useful ex-
pressions for the proper self-energy ���k;!�. The first
step is the derivation of effective interactions. We use for
that purpose results from diffusion Monte Carlo calcula-
tions [2]. The structure function can be written as

S�k� � S��k� � S��k��1�2; (2)

where the components are constructed from the structure
functions for parallel and antiparallel spins. Both quan-
tities are obtained by either directly evaluating the ex-
pectation value of �k��k or by Fourier transforming the
corresponding pair distribution functions. The first pro-
cedure is more accurate for long wavelengths up to the
size of the simulation box, whereas the latter is appropri-
ate for medium and short wavelengths. Moreover, one can
determine the long-wavelength limit of S��k� from the
bulk compressibility; we comment on this below. We have
taken the Fourier transform of the pair distribution func-
tion for wave numbers k � kF and direct simulation data
for long wavelengths and have smoothly interpolated
these data towards k ! 0. The static structure functions
at two densities are shown in Fig. 1. The density static
structure function shows the typical behavior, whereas the
spin-structure function depends only weakly on the den-
sity in the most interesting regime.

The static structure functions are related to the dy-
namic response functions through the m0 sum rule

Ss�k� � �
Z 1

0

d� �h!�

�
Im�s�k;!�: (3)

Above, s 2 f�;�g refers to the spin channel. Assuming a
model such as the random phase approximation (RPA),

�s�k;!� �
�0�k;!�

1� ~VVs�k��0�k;!�
; (4)

we can relate the static structure functions Ss�k�
uniquely to the effective interactions ~VVs�k�. The tilde in
the potential indicates that we use dimensionless FourierR
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FIG. 2. The density-channel and spin-channel interactions
obtained from the corresponding structure functions through
the RPA relationship (3) are shown for the densities � �
0:046 �A�2 (solid lines) and � � 0:061 �A�2 (dashed lines).
The interactions are given in units of �h2k2F=2m.
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FIG. 1. The density structure functions S�k� (upper curves)
and correlation part of the spin structure functions S��k� �
SF�k� (lower curves) are shown at the densities � � 0:046 �A�2

(solid lines) and � � 0:061 �A�2 (dashed line). The zero level
(dotted line) is included as a guide to the eye.
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the Lindhard function has the dimension of an inverse
energy. We note in passing that the RPA (4) also satisfies
the m1 sum rule as an identity, whereas the inclusion of at
least two-particle–two-hole excitations is needed to sat-
isfy higher-order sum rules [10].

The long-wavelength limit of ~VV��k� is related to the
bulk compressibility

d
d�

�2 dE
d�

�
d
d�

�2 dEF

d�
� ~VV��0��; (5)

where E and EF are the energy per particle of the inter-
acting and the noninteracting systems, respectively. We
can thus determine ~VV��0�� from the equation of state.
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Figure 2 shows the effective interactions ~VVs�q� defined
through relations (3) and (4) at two representative den-
sities. These effective interactions resemble the Aldrich-
Pines pseudopotentials [11], which have been derived in a
similar spirit. The most prominent features are the same:
the density-channel interaction is repulsive and can lead
to a zero sound excitation, whereas the spin-channel
interaction does not. We also note that, similar to the
spin-structure function, there is relatively little change
in the spin-channel effective interaction when given in
dimensionless units.

Getting back to the self-energy, we assume low-lying
excitations. In that case, the so-called G0W approxima-
tion [9,12] for the self-energy,
��k; E� � u�k� � i
X
s

�2s� 1�
Z d2q d� �h!�

��2��3
G0�k� q; E� �h!� ~VV2

s�q��s�q;!� � u�k� ������k; E� ������k; E�; (6)
should be appropriate. We have split the full self-energy
into an energy-independent mean field term u�k� and the
two dynamic, energy-dependent portions �����k; E� and
�����k; E� originating from coupling to density and spin
fluctuations, respectively. We have taken for u�k� the
exchange term of the static density-channel interaction
~VV��q�. One could here, in principle, also use the single-
particle spectrum of correlated basis functions theory, but
the basic results are very similar and within the limits of
the present description.

The self-energy is conveniently evaluated by Wick
rotation in the complex ! plane; the salient features
have been discussed in the literature [7,8,12]. With the
stated approximations, one obtains the spectrum

��k� � t�k� � ��k; ��k��: (7)

In the numerical applications, we have used the ‘‘on-shell
approximation’’ ��k� ! t�k� in the self-energy. It is our ex-
perience in 3He-4He mixtures that this gives good agree-
ment with much more sophisticated implementations of
the same theory [13]. Especially, one might be led to
‘‘dress’’ the single-particle Green’s functions in the self-
energy (6) by solving Eq. (7). However, single-particle
Green’s functions appear in two locations: One is the
external propagator spelled out explicitly in Eq. (6); the
other location is the particle-hole propagator. To maintain
the symmetry between ‘‘internal’’ and ‘‘external’’ propa-
gators, one should apply any modifications either to both
or to none. Using a nontrivial spectrum the particle-hole
propagator is, on the other hand, extremely dangerous
because one would then violate the m0 and m1 sum rules
and, hence, modify the overall importance of the dy-
namic part of the self-energy in an uncontrolled way. A
systematic improvement of the theoretical framework is
the inclusion of pair excitations [14].
085302-2
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Figure 3 shows the mean field u�k� and the dynamic
contributions �����k; t�k�� and �����k; t�k��. All three
terms are, in the vicinity of the Fermi momentum, rather
smooth functions of the single-particle momentum k.
u�k� has positive slope at the Fermi wave number and,
hence, decreases the effective mass, whereas both dy-
namic contributions cause an effective mass enhance-
ment. The S shape of the spin-channel term is typical
for attractive interactions [7,8,15,16]. At higher momenta,
we found similar structures as in three-dimensional 3He
originating from a coupling of the single-particle excita-
tion to the maxon [7,8]; these will not be discussed here.
The full on-shell self-energy is shown, for several den-
sities, in Fig. 4. The most evident feature is the develop-
ment of a saddle around the Fermi wave number, which is
due to spin fluctuations and leads, at high densities, to an
instability.

The effective mass is obtained from the single-particle
spectrum through

�h2kF
m�

�
d��k�
dk

�������k�kF

: (8)

Both experiments [6,17,18] and our calculations indicate
that the effective mass increases rapidly with density and
eventually becomes singular. The primary quantity that
one calculates is the single-particle spectrum. For a theo-
retical analysis, it is therefore more convenient to discuss
the inverse, m=m�. Figure 5 shows, as our final result, the
density dependence of the effective mass ratio m=m� and
compares it with the experiments of Refs. [6,17,18]. The
fluctuations of our results are due to the statistical un-
certainties of the diffusion Monte Carlo simulations.
These are most pronounced in the spin-dependent corre-
lations since the spin-structure function, S��k� �
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FIG. 3. The figure shows the Fock term u�k� (short-dashed
line), the ‘‘density’’ term ���k; t�k�� (solid line), and the ‘‘spin’’
term ���k; t�k�� (long-dashed line) of the self-energy for the
density � � 0:046 �A�2. All functions have been shifted to be
zero at the Fermi momentum; all energies are given in units of
�h2k2F=2m.
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S"#�k� � S""�k�, is the difference of two quantities ob-
tained from diffusion Monte Carlo simulations, but these
fluctuations do not affect our general result.

The overall theoretical picture is practically the same
as the experimental one, although our theory overesti-
mates the correlation effect somewhat and the instability
occurs around 0:048 �A�2. The experimental ratio m=m�

is, to reasonable accuracy, a linear function of the density
which goes through zero between � � 0:051 �A�2 and
� � 0:07 �A�2, causing a singular m�. Our theoretical
calculations reproduce the experimental values within
about 10%–20% when compared with the spectrum of
the noninteracting Fermi gas. This is satisfactory consid-
ering the simplicity of the G0W approximation (6).

The individual contributions from spin and density
fluctuations are also shown in Fig. 5. The mean field
term and density fluctuations contribute somewhat less
than spin fluctuations, but are non-negligible. Both ef-
fects are individually insufficient to reproduce the experi-
mental values. This is the case in both two and three
dimensions [8], but the relative importance of spin fluc-
tuations appears to be larger in 2D.

In both three and two dimensions, one observes a
divergence of the effective mass at some high density.
Extrapolating the data of Refs. [19,20], one observes that
the divergence of the effective mass would appear in 3D
at a density 0:03 �A�3, whereas the liquid-solid phase
transition occurs at 0:023 �A�3. The 2D situation is some-
what different: Reference [6] implies a divergence of m� at
about 0:051 �A�2; earlier data [17,18] suggest a somewhat
higher density. The film freezes between 0:052 �A�2 [6]
and 0:063 �A�2 [21].

It seems unlikely that freezing and the singularity of
the effective mass have the same cause. The divergence in
m� is due to the increasing importance of spin fluctuations
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FIG. 4. The figure shows the full on-shell spectrum (7) for
the densities � � 0:026 �A�2, � � 0:046 �A�2, and � �
0:061 �A�2. The free single-particle spectrum t�k� is also shown
for comparison. All functions have been shifted to be zero at
the Fermi momentum; all energies are given in units of the
Fermi energy of the noninteracting liquid.
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FIG. 5. The figure shows the density dependence of m=m� at
the Fermi wave number kF (solid line). Also shown are the
results from density fluctuations (long-dashed line) and from
spin fluctuations only (short-dashed line). The dashed lines
with solid markers show the experimental values of
Refs. [6,17,18]. The lines through the theoretical data are
quadratic fits.
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with density. This is manifested very clearly in 2D and
also visible in 3D. The theory used here reproduces those
features, in both 3D and 2D, at a semiquantitative level
without the need for phenomenological input. The fact
that we obtain a negative slope of the single-particle
spectrum is clearly a consequence of the G0W approxi-
mation; a self-consistent theory should not have solutions
for unstable situations. Nevertheless, relatively simple
approximations have often shown the same physics as
more sophisticated theories in the stable regime, which
then simply cease to have solutions beyond the point of an
instability. We are presently not prepared to speculate on
‘‘what is beyond’’ the singularity.

A second interesting question is why the 2D theory
apparently overestimates the effective mass, whereas it
underestimates m� in 3D. One can only speculate that a
2D model is an obvious simplification of the real physical
situation of an adsorbed film, and little is known about the
severity of such an approximation for 3He.

We have shown that understanding the value of the
effective mass in two-dimensional 3He is — in analogy
to the more common three-dimensional case — not a
simple problem, and simple paradigms that try to attrib-
ute the effect to a single cause are genuinely inadequate.
Both spin and density fluctuations have profound effects,
although spin fluctuations are stronger in 2D and we are
more inclined to associate the effect of density fluctua-
tions to Feynman-Cohen backflow instead of ‘‘localiza-
085302-4
tion.’’ We hesitate to conclude that the flattening of the
single-particle spectrum caused by interactions should be
identified with a Mott transition; it indicates more likely a
lack of self-consistency of our calculations. The observed
singularities [6,17,18] that depend sensitively on the
underlying substrate structure are most likely caused by
it. Quantitative improvement will first be sought in a more
accurate description of the response functions [14].
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