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Tokamak Equilibria with Reversed Current Density
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Observations of nearly zero toroidal current in the central region of tokamaks (the ‘‘current hole’’)
raises the question of the existence of toroidal equilibria with very low or reversed current in the core.
The solutions of the Grad-Shafranov equilibrium equation with hollow toroidal current density profile
including negative current density in the plasma center are investigated. Solutions of the corresponding
eigenvalue problem provide simple examples of such equilibrium configurations. More realistic
equilibria with toroidal current density reversal are computed using a new equilibrium problem formu-
lation and computational algorithm which do not assume nested magnetic surfaces.
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eigenfunction without nulls inside the domain. Plenty of
other eigenfunctions provide a range of equilibria with a

to zero toroidal current within it and the negative current
region lies inside that surface. However, the surface with
Experiments on JET [1] and JT-60 [2] have demon-
strated improved confinement regimes with reversed
shear and nearly zero toroidal current density in the
central region. Such configurations are the result of
high-bootstrap current regimes at high beta which, to-
gether with low recirculation power for the current drive,
lead to a reduced cost and increased efficiency of a fusion
device. The magnetic equilibria with current density re-
versal are also related to the ac tokamak operation [3],
another attractive option. Toroidal axisymmetric equilib-
ria with zero current density in a finite region in the
plasma core (current hole) were analytically [4] and
numerically [5] investigated. However, a reversed current
density in the core, in the sense of a core current density
having the opposite sign as the total plasma current,
prevents the existence of equilibrium solutions with
nested flux surfaces, except for one-dimensional cases
(e.g., a circular cylinder). More precisely, a closed mag-
netic flux surface with identically vanishing poloidal
magnetic field can exist only if the current density is
zero everywhere inside that surface [4,6].

On the other hand, more general axisymmetric equi-
libria with reversed current density and poloidal field do
exist. These equilibria are characterized by the presence
of axisymmetric magnetic islands. Simple examples
are readily given by the eigenfunctions of the Grad-
Shafranov operator. The eigenvalue problem
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with  � 0 at the boundary defines force-free equilib-
rium configurations with a toroidal current density j� �
� =R. An equilibrium solution with nested flux surfaces
 � const corresponds to the lowest eigenvalue and an
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different topology of the magnetic surfaces. In the limit
of the infinite aspect ratio and the circular cross section
(circular cylinder), the solutions of Eq. (1) are

� � z2m;k;  � Jm�
����
�

p
��eim�; m; k � 0; 1; 2; . . . ; (2)

where ��; �� are polar coordinates; Jm and zm;k are Bessel
functions and their zeros. Toroidicity and cross-section
shaping lead to the coupling of poloidal harmonics and
splitting of multiple eigenvalues. Solutions of the eigen-
value problem (1) were found on a standard fixed grid by
the inverse iteration method using the same difference
scheme as in the CAXE code [7]. Taking the value of �
from (2) as an initial guess the method converges to the
closest eigenvalue and yields the corresponding eigen-
function. In tokamaks with an finite aspect ratio, 2D-
modified m � 0, k > 0 eigenfunctions were found in the
spectrum (together with the 2D-modified m > 0 multi-
pole eigenfunctions). The eigenfunctions exhibit poloidal
field reversal and magnetic island formation with the X
points inside the plasma domain (in contrast to the multi-
poles with X points at the boundary). Moderate cross-
section ellipticity leaves the X points inside the domain
(Fig. 1).

The presence of nested flux surfaces in the outer region
with positive current density (assuming negative eigen-
function values in the center) suggests the existence of
more realistic equilibrium configurations with current
density reversal near the plasma center. One such possi-
bility is discussed in [8] in relation to the current hole
modeling.

Negative current density at the magnetic axis im-
plies poloidal field reversal as follows from the expression
for a circular cylinder: �B� �

R�
0 �

0j���0�d�0. Conse-
quently, the magnetic surface with B� � 0 corresponds
2003 The American Physical Society 085004-1



FIG. 2. Magnetic surfaces for two values of Iin=Iout: �0:1
(upper row) and �0:03 (lower row). Aspect ratio A � 3,
circular cross section. The shaded regions correspond to the
delimiting surface with ad � 0:2 and j� < 0 inside. Expanded
central regions are shown on the right.

FIG. 1. Level lines of the eigenfunctions  from the m � 0,
k � 1 branch for the plasma boundary aspect ratio A � 3,
circular (elongation E � 1) and elliptic E � 1:3 cross sections.
The shaded regions correspond to j� < 0.
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identically vanishing poloidal field (r � 0) and non-
zero current inside exists only in a purely 1D case. Any
2D effect (toroidicity or shaping) leads to the formation of
an n � 0 magnetic island in place of that surface.

Two flux functions p� � and f� � should be prescribed
to define the equilibrium toroidal current density

j� � Rp0 	
1

R
ff0;

where p0 � dp=d , f0 � df=d . Only force-free equi-
libria with zero pressure gradient p0 � 0 are consid-
ered here.

The first difficulty in posing a correct equilibrium
problem with current density reversal is the different
specification of the flux functions in the negative current
density region in the core and the positive current density
region outside it. This can be done if the two regions are
delimited by some closed magnetic surface. Then the
simplest choice is to use constant ff0 both inside, ff0 �
hin < 0, and outside that surface, ff0 � hout > 0. In the
cylindrical limit a 1D solution with nested flux surfaces
exists for any prescribed coordinate � � �d of the circu-
lar delimiting magnetic surface and for any pair of con-
stants, hin and hout, in the current density definition. In
general 2D cases, the position and shape of the delimiting
surface should be calculated along with the solution of the
equilibrium problem. Our method is to prescribe the
diameter (horizontal size) of the delimiting surface 2ad
(in units of the plasma minor radius) and the current
ratio Iin=Iout. In this Letter, we show that this formulation
can provide equilibrium solutions for a wide range of
parameters.

On the basis of the CAXE code [7] the following nu-
merical procedure has been developed. First, an approxi-
mation of the delimiting surface is obtained by tracing
the flux surface through some reference node of the
computational grid using current values of the function
 . The corresponding index line of the polar grid is
adapted to the delimiting surface and a usual Picard
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iteration is performed with current densities hin; hout ad-
justed to preserve the prescribed currents Iin; Iout. To pro-
vide the required shift of the adaptive grid, a feedback
procedure connected with the change of the delimiting
surface position between the iterations is implemented (in
non-up-down symmetric cases not only a horizontal, but
also a vertical shift feedback is needed). In contrast to the
linear eigenvalue problem, for which all possible solu-
tions can be found, the general equilibrium problem is
nonlinear and it is not possible to make strict mathemati-
cal statements about the existence and unicity of solu-
tions. The numerical results below are merely examples of
possible solutions.

Figure 2 demonstrates that, for a prescribed delimiting
surface diameter, its shape and the shape of the islands
change according to the value Iin=Iout. In Fig. 3 the
elongation of the delimiting surface and the ratio of the
current densities are shown versus Iin=Iout for a fixed value
of ad. For negative values of Iin=Iout approaching zero the
elongation of the delimiting surface decreases (becoming
oblate) and the X points approach the delimiting surface.
This could possibly explain the limited range of the
admissible negative values of Iin=Iout: no equilibrium
solution was found in the series with fixed delimiting
surface diameter for Iin=Iout=a

2
d * �0:5. The current

density ratio hin=hout is nonmonotonic versus Iin=Iout
and two different equilibrium solutions exist with the
same hin=hout and different Iin=Iout values. For the nor-
malized current ratio Iin=Iout=a2d all functions shown in
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FIG. 5. Equilibrium solutions for low values of current ratio
Iin=Iout � �1 (left), Iin=Iout � �1:5 (center), and Iin=Iout � �2
(right). A � 3, ad � 0:2.

FIG. 3. Delimiting surface elongation Ed (circles) for bound-
ary elongation E � 1 and current density ratio hin=hout
(squares) versus Iin=Iout=a2d < 0. A � 3, ad � 0:2.
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Fig. 3 depend weakly on the boundary aspect ratio and the
delimiting surface diameter. However, the current density
limit significantly varies with the boundary elongation.

Prescribing the horizontal size 2ad and the current
ratio Iin=Iout < 0 does not guarantee the uniqueness of
the equilibrium solution. Several solutions can exist for
sufficiently negative Iin=Iout (Fig. 4). However, for a given
value of Iin=Iout < 0 there is at most only one solution
with internal X points and nested flux surfaces near the
boundary. All other solutions (multipole type) exhibit X
points at the surface and therefore cannot be embedded
into an external nested flux surface configuration without
breaking the poloidal magnetic field continuity.

The value Iin=Iout � �1 corresponds to the equilibrium
with vanishing total plasma current, in which case the
normal derivative of  at the boundary must change sign
(it is zero on average and can be identically zero only in
the 1D case). This implies the existence of X points at the
plasma boundary, where d =dn � 0. For sufficiently
negative Iin=Iout <�1 the poloidal field eventually re-
verses in the whole plasma volume and a configuration
with nested flux surfaces is restored (Fig. 5). The kind of
solution with nested flux surfaces (corresponding to re-
verse current density near the edge rather than in the core
as long as jIinj > jIoutj) exists for any delimiting surface
diameter. Moreover, for ad close to 1 there is only one
solution branch of the same type as in Fig. 5 in contrast to
multiple solutions for small ad values. The equilibrium
sequence from Figs. 4 and 5 leading to the total current
FIG. 4. Several equilibrium solutions with the same values of
ad � 0:2 and current ratio Iin=Iout � �0:6. A � 3.
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reversal shows that plasma equilibria can subsist during
the ac operation of tokamaks, as was demonstrated ex-
perimentally [3].

The same equilibrium formulation can be used with
positive values of Iin=Iout > 0 to get nested flux surface
configurations with a current hole equilibrium in the limit
Iin=Iout ! 	0. The delimiting surface elongation depends
quite strongly on the current ratio in the range 0:1a2d <
Iin=Iout < a2d, when the current profile becomes hollow
(the value Iin=Iout=a2d corresponds to the current density
ratio hin=hout for a delimiting surface similar to the
plasma boundary) with the elongation limit always
higher than that of the plasma boundary (Fig. 6).

In a recent paper [9] a quite detailed reconstruction of a
JET equilibrium with extreme shear reversal was re-
ported. The equilibrium formulation described above
provides a possibility of finding similar equilibria with
different magnetic field structures in the current hole. To
model the hollow current density outside the current hole
the following parametrization was used:

ff0 � �1� f1�ae1�1� a�e2=c	 f1�1� a�;

e1 � e2a�=�1� a��, c � ae1� �1� a��e2 , where the expo-
nent e2 � 2 and the parameter a� � 0:1 are prescribed.
The flux surface label a outside the delimiting flux
surface with  �  del is defined as a � � �  del�=
� bou �  del�, where  bou is the value at the plasma bound-
ary. A constant ff0 � f1 � 0:01 was specified inside the
FIG. 6. Delimiting surface (current hole) elongation Ed ver-
sus Iin=Iout=a

2
d > 0. A � 3, ad � 0:2, boundary elongations

E � 1, E � 1:3, and E � 1:6.
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FIG. 7. Magnetic surfaces for the current hole equilibria with
JET geometry. The shaded regions correspond to the delimiting
surfaces. The level lines of  are given for equal steps in  
inside and outside the current hole (the step inside is 2 orders of
magnitude lower). In the insets the toroidal current density and
the rotational transform profiles in the plasma equatorial plane
are shown.
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delimiting surface (‘‘current hole’’) with ad � 0:3. This
gives the equilibrium with nested flux surfaces shown in
Fig. 7 (upper panel) with the current inside the current
hole about 0.3% of the total current (the value of the
rotational transform in the plasma center is 1=q

1=200). For the second equilibrium (Fig. 7, lower panel)
one more delimiting surface was introduced with a�d �
0:1 and constant negative current density hin � �0:037
inside it and hout � 0:01 outside. The resulting elongation
of the negative current region is E�

d � 0:65 which is close
to the limiting value. In both cases the elongation of the
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current hole Ed � 2:1 is higher than the boundary elon-
gation E � 1:7. The ideal MHD stability of the equilib-
rium with nested flux surfaces was calculated using the
KINX code [10]. Because of a sufficiently high global
shear (q95 � 5:75, qmin � 3:25) the equilibrium is stable
against external kink modes.

In summary, tokamak equilibrium solutions with cur-
rent density and poloidal field reversal have been inves-
tigated. The proposed equilibrium problem formulation
allowed us to compute a wide range of equilibria with
negative current in the plasma core. In plasmas with a
finite aspect ratio or elongation, the current reversal leads
to the formation of axisymmetric magnetic islands and
these have been computed self-consistently. The question
of the relevance of the proposed equilibrium solutions to
experiments is open. While the approach presented here is
applicable to more general plasma profiles and finite  ,
force-free configurations seem to be a suitable model for
the current hole investigation because of the very flat
pressure profile inside it. The MHD stability of 2D equi-
libria with negative central current should be investigated.
In particular, it would be a natural extension of current
hole stability and evolution studies [5,9,11]. In the context
of the possible ac operation of tokamaks, we have shown
that a wide range of equilibria can exist during total
current reversal, including cases with a large dipole cur-
rent, in agreement with experiments [3].
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