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Superstatistical Mechanics of Tracer-Particle Motions in Turbulence
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The Lagrangian stochastic model of Reynolds [Phys. Fluids 15, L1– 4 (2003)] for the accelerations of
fluid particles in turbulence is shown to predict precisely the observed Reynolds-number dependency of
the distribution of Lagrangian accelerations and the exponents characterizing the observed extended
self-similarity scaling of the Lagrangian velocity structure functions. Departures from superstatistics
of the log-normal kind are accounted for and their impact upon model predictions is quantified.
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two universal Lagrangian velocity structure constants, a0
and C0, the kinematic viscosity �, and the velocity vari-

Lagrangian accelerations and independent of a0 which
determines the acceleration variance. For the extreme
Recent experimental studies [1–5] have revealed that
Lagrangian velocities and Lagrangian accelerations in
high Reynolds-number turbulence are extremely inter-
mittent quantities. Beck and co-workers [6–8] advocated
the parametrization of Lagrangian acceleration statistics
in terms of distributions that maximize nonextensive
(Tsallis-like) entropies. Reynolds [9] subsequently devel-
oped a Lagrangian stochastic (LS) model for the simu-
lation of fluid-particle accelerations that is exactly
consistent with one such distribution, namely, a ‘‘super-
statistical’’ distribution of the log-normal kind [8]. In
contrast with more conventional modeling approaches
[10], the new model incorporates explicitly fluctuations
in the rate of dissipation of turbulent kinetic energy, ". In
this Letter it is shown that nearly precise agreement with
the observed Reynolds-number dependency of the distri-
bution of Lagrangian accelerations [2,3] is obtained
when, in accordance with Kolmogorov’s suggestion [11]
and data from direct numerical simulation (DNS) [12],
the variance of the logarithm of the dissipation rate, � �
ln�"=h"i� is approximated by �2

� � �0:354� 0:289 lnR�,
where R� is the Reynolds number based upon the Eulerian
Taylor microscale. The model is also shown to predict
precisely the observed extended self-similarity scaling of
the Lagrangian velocity structure functions [4] when, in
accordance with the results of DNS [12], the temporal
evolution of � is modeled as an Ornstein-Uhlenbeck
process.

The model of Reynolds [9] is prescribed by
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where A�t� is the Lagrangian acceleration of a fluid par-
ticle, u�t� is its velocity at time t, and d� is an incremental
Weiner process with mean zero and variance dt. The two
time scales, TL � 2�2

u=C0" and t
 � 2a	0�
1=2=C0"1=2, are

defined in terms of the instantaneous dissipation rate ",
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ance �2
u. The conditional acceleration variance �2

Aj" �
a	0"

3=2��1=2. By construction the model is exactly con-
sistent with independent Gaussian distributions for accel-
erations and velocities with zero means and variances �2

u
and �2

Aj". Model predictions for the distribution of
Lagrangian accelerations are determined by P�A� �R
P�Aj"�P�"�d".
Following Pope and Chen [13], the evolution of �,

along a fluid-particle trajectory, is prescribed by
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where in accordance with DNS data [12], h�i � �1=2�2
�

and T� � 2�2
u=C0h"i and where d�0 is an incremental

Weiner process (independent of d�) with mean zero and
variance dt. The distribution of � is Gaussian.

It is evident that Eqs. (1) and (2) can be combined into a
single equation for the evolution of Lagrangian acceler-
ations, which contains both multiplicative and additive
noise and which is closely akin to the Langevin model
of Eulerian intermittency developed by Laval et al.
[14]. In both models the multiplicative noise results in
intermittency.

According to Kolmogorov’s (1941) hypothesis [15], the
acceleration variance hA2i � a0h"i3=2=�1=2, while the
log-normal distribution of the dissipation rate implies
that hA2i � a	0h"

3=2i=�1=2, in accordance with Kolmo-
gorov’s refined hypothesis [15]. The universal constant
a	0 is related to a0 by a0 � a	0 exp�3=8�

2
��. Figure 1 shows

that the observed dependency of a0 on Reynolds number
is captured well by this relationship when a	0 � 3:3.
Unless stated otherwise, model predictions presented in
the remainder of this Letter were obtained for a	0 � 3:3
and C0 � 7. Figure 2 demonstrates that for A=�A < 30
the model is in startling good agreement with the experi-
mental data [2,3,5]. The model is seen to predict accu-
rately the increase in the extension of the tail of P�A� with
increasing Reynolds number. Note that this agreement is
dependent only upon �� and is independent of C0, �u,
and T� which determine the temporal evolution of
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FIG. 1. Comparison of the predicted (solid line) and mea-
sured (symbols: �, �, + [1]; �, � [3]) dependence of the
Kolmogorov constant a0 on Reynolds number R�.
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tails (R� � 690 data for jAj=�A > 30) the model tends to
overestimate P�A�. This is further illustrated in Fig. 3,
which shows that the model tends to overpredict the
acceleration flatness. This is partly because the experi-
mental data pertains to Lagrangian velocity increments at
a small but finite time scale rather than to Lagrangian
accelerations per se. To remove high frequency noise
resulting from the electronics, mechanical vibrations
and digital discretization, the data acquired for R� �
690 was filtered using a Gaussian kernel of width 0:17t

[5]. The insets in Figs. 2 and 3 show that the tails and
consequently the flatness of the predicted distribution
FIG. 2. Comparison of predicted (lines) and measured [2,3]
distributions of tracer-particle accelerations for R� � 200 (
,
solid line) and R� � 970 (4, dashed line). The inset shows a
comparison between model predictions for the distribution of
Lagrangian accelerations (solid line), model predictions for the
distribution of velocity increments among 7:5
 108 particles
over a time scale 0:17t
 (
), and the experimental data [5] for
R� � 690 (�).
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of velocity increments over this time scale differ sig-
nificantly from the model predictions for Lagrangian
accelerations. The predicted distribution of velocity in-
crements is seen to be in very close agreement with the
experimental data and the predicted flatness, F � 58,
coincides with the recent experimental estimate, F �
55� 4 [5]. Crawford et al. [5] showed how the observed
distribution of velocity increments, �u, for R� � 690 can
be parametrized accurately in terms of a stretched ex-
ponential with a superskewness, S � h�u6i=h�u2i3 �
4:5
 104. The predicted superskewness of these velocity
increments, S � 4:5
 104, is in exact agreement
with the experimental estimate and is significantly less
than the superskewness of the modeled accelerations,
S � 11
 105.

The discrepancy between the measured and predicted
distributions of Lagrangian accelerations may also be
attributed, at least in part, to the assumption of a log-
normal distribution for dissipation rates that is strictly
applicable only for asymptotically large Reynolds num-
bers. The results of DNS indicate that departures from
log-normality are significant at low Reynolds numbers
(R� � 93) [12]. For example, the central moments of �
extracted from the results of DNS for isotropic turbulence
with R� � 38, �3 � �0:24, �4 � 3:22, and �6 � 20:0
are markedly different from the log-normal values of 0, 3,
and 15 [12]. The impact of these departures from log-
normality upon the modeled distribution of Lagrangian
accelerations can be calculated by first constructing a
distribution, P���, that is consistent with the DNS data
for the central moments. The least biased choice for P���
and the one adopted here is
FIG. 3. Comparison of the predicted (solid line) and mea-
sured (symbols; error bars indicate experimental uncertainty)
[3] flatness of the distribution of Lagrangian accelerations.
Experimental values are lower bounds obtained for jAj=�A �
30 (more recent data for R� � 690 and jAj=�A � 50 yields F �
55� 4 [5]). The inset shows the predicted flatness of velocity
increments for R� � 690.
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FIG. 4. Model predictions for the distribution of Lagrangian
accelerations in isotropic turbulence with R� � 93 for a log-
normal distribution (solid line, lower inset) of dissipation rates
and for a maximum missing information (mmi) distribution
(dashed line, lower inset) based upon DNS data [12]. Also
shown (upper inset) are model predictions for R� � 38.

FIG. 5. Model predictions for the Lagrangian velocity auto-
correlation function, R���, and the second-order Lagrangian
velocity structure function, DL2 ���, nondimensionalized by the
Kolmogorov scaling "� for R� � 740.
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P��� � exp�c0 � c1�� c2�2 � c3�3 � c4�4 � c6�6�:

(3)

This distribution maximizes the uncertainty about the
missing information contained in fifth-, seventh-, and
higher-order moments. The six coefficients, ci, were de-
termined from the conditions imposed by normalization
and consistency with the DNS data for h�i, h�2i, �3, �4,
and �6. The distinction between (3) and the log-normal
distribution together with the impact of the departures
from log-normality upon the predicted distribution of
accelerations are shown in Fig. 4. It is evident that de-
partures from log-normality suppress the occurrence of
extremely large but rare accelerations. They also reduce
the occurrence of small accelerations (jAj=�A � 1) and
so may account for the tendency of the log-normal model
to overpredict the magnitude of the central core of P�A�.

Mordant et al. [4] measured incremental changes in
particle velocities over finite times in high Reynolds-
number turbulence having R� � 740. For times exceed-
ing the Kolmogorov dissipative time scale, they observed
that the Lagrangian velocity autocorrelation function,
R��� � hu�t�u���i=�2

u, can be reproduced extremely pre-
cisely by an exponential, R��� � e��=T , where T is a time
scale associated with the ‘‘energy-containing’’ scales of
motion. This key feature of turbulent dispersion is pre-
dicted by the model. For asymptotically large Reynolds
numbers, the modeled form of the Lagrangian velocity
autocorrelation function is given by
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where the angular brackets denote an ensemble average
over dissipation histories and where T � 2�2

u=C0h"i.
As illustrated in Fig. 5 for R� � 740, the modeled form

of the Lagrangian velocity autocorrelation function at
large times is also well described by an exponential
when the Reynolds number is large but finite. The mea-
sured integral Lagrangian time scale [4] is predicted
accurately by the model.

For the inertial subrange, Kolmogorov scaling dictates
that the second-order Lagrangian velocity structure func-
tion DL2 ��� � h�u�t� �� � u�t��2i � 2�2

u�1� R���� �
C0"�. Mordant et al. [4] did not observe a plateau in
DL2 ���="� at C0 but found that DL2 ���="� reaches a maxi-
mum of C	

0 � 2:9 at � � 20t
. Subsequent improvements
in the estimate for " yield a revised value of C	

0 of about
4.0 [16]. This data was acquired for particles having a size
about 10 times larger than the Kolmogorov dissipation
length scale and having a response time about twice as
large as the Kolmogorov dissipation time scale. As a
consequence, as compared to the case of fluid particles,
the maximum in DL2 ���="� occurs at later time and has a
value that is lower than the actual value of C	

0. Figure 5
(inset) demonstrates that model predictions for the true
location and value of C	

0 are in accord with the experi-
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mental data when C0 � 6. This value for C0 is midway
between the only two known high-quality independent
measurements of C0 [17].

In accordance with the data of Mordant et al. [4],
distributions of simulated velocity increments are almost
Gaussian at integral time scales and progressively develop
stretched exponential tails for small time increments.
This continuous evolution with scale is quantified in
Fig. 6 in terms of the excess flatness, K � F� 3. More
generally, the evolution of these distributions can be
characterized by the behavior of their moments (i.e., by
the Lagrangian velocity structure functions), DLq ��� �
hu�t� �� � u�t�qi. In the limit of very large Reynolds
084503-3



FIG. 6. The evolution of the excess flatness K��� �
h��u�4i=h��u�2i2 � 3 of the predicted distribution of velocity
increments �u for R� � 200 (dashed line) and R� � 740 (solid
line).

FIG. 7. Extended self-similarity plots of the Lagrangian ve-
locity structure function variation. The dissipative range is not
displayed.
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number, inertial subrange scaling dictates that DLq ��� /
��q. To compensate for the lack of a true inertial subrange
at Reynolds numbers accessible to experiment, Mordant
et al. [4] studied the relative scaling of the structure
functions, DLq ��� / DL2 ���

�q. Figure 7 demonstrates that
such extended self-similarity is reproduced by the model.
For R� � 740, the model predicts that �1 � 0:55, �3 �
1:35, �4 � 1:60, and �5 � 1:76 in precise accordance with
the experimental values of �1 � 0:56� 0:01, �3 �
1:34� 0:02, �4 � 1:56� 0:06, and �5 � 1:8� 0:2. Con-
sequently, the model is consistent not only with Kol-
mogorov’s predictions for second-order quantities, but is
also exactly consistent with the very strong intermittency
observed at higher orders. The relative intermittency ex-
ponents were not found to be sensitively dependent upon
either the Reynolds number or the integral time scale, T�,
and for R� > 75 are essentially indistinguishable from
the model predictions, �1 � 0:55, �3 � 1:35, �4 � 1:60,
and �5 � 1:75, pertaining to asymptotically large
Reynolds numbers. For asymptotically large Reynolds
numbers, an exact model calculation yields �q �
1� �q=2� 1�Dq=2, where Dq � 1� 0:2q is the spectral
scaling function of dissipation. Mordant et al. [18] also
introduced a LS model that can reproduce the observed
Lagrangian intermittency. In that model, however, the
intermittency exponents are essentially a model input,
being incorporated into the model through a judicious
choice for the driving noise. Gaussianity of the velocity
increments is attained at time scales much larger than the
integral time scale [16], and there is no explicit account of
Reynolds-number effects. In accordance with experimen-
tal observations [18], both models predict that the accel-
eration is correlated over times comparable with the
Kolmogorov dissipation time scale while the modulus of
the acceleration, jAj, is correlated over times comparable
with the integral Lagrangian time scale.
084503-4
In conclusion, a simple LS model for accelerations in
turbulence has been presented that is in nearly precise
agreement with key features of recently acquired experi-
mental data for fluid-particle trajectories in high
Reynolds-number turbulence.

This work has benefited from many stimulating dis-
cussions with Nicolas Mordant.
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