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Estimating Good Discrete Partitions from Observed Data: Symbolic False Nearest Neighbors
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A symbolic analysis of observed time series requires a discrete partition of a continuous state space
containing the dynamics. A particular kind of partition, called ‘‘generating,’’ preserves all determin-
istic dynamical information in the symbolic representation, but such partitions are not obvious beyond
one dimension. Existing methods to find them require significant knowledge of the dynamical evolution
operator. We introduce a statistic and algorithm to refine empirical partitions for symbolic state
reconstruction. This method optimizes an essential property of a generating partition, avoiding
topological degeneracies, by minimizing the number of ‘‘symbolic false nearest neighbors.’’ It requires
only the observed time series and is sensible even in the presence of noise when no truly generating
partition is possible.
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topological entropy, because some distinct transitions are is randomly assigned a symbol from the alphabet. For
State space reconstruction, in particular the time-delay
embedding [1], is a universally popular key representation
tool that opened experimentally observed time series to
analysis as dynamical systems. The state is represented as
sequences of vectors in some finite-dimensional vector
space with continuous coordinates, very often Euclidean.
A key property central to its popularity is that, given
sufficient coordinates, almost all reconstructions are
generically satisfactory. The reconstructed dynamics
are equivalent to the underlying dynamics.

Instead of a continuous vector space, what about a
discrete, low-precision representation—sequences of
symbols? A discrete representation opens up the many
powerful techniques of information and communication
theory in addition to the connection between discrete
mathematics and dynamical systems via the theoretical
study of symbolic dynamics. Experimentally, symbolic
techniques have attracted significant interest in a number
of areas [2], but choosing the initial representation is still
a problem. The obligatory discretization requires a parti-
tion: a coloring of the state space [3], x 2 Rd, into non-
overlapping regions and associated symbols so that any x
is assigned a single symbol s from a finite alphabet,
representable as the integers 0; 1; . . . ; A� 1. A partition
P defines a discretization of the observed data sequence
xi (i 2 1 . . .N) into a symbolic sequence si. Which dis-
cretizations retain invariants of the original dynamics in
the sequence of symbols? Unfortunately, the situation is
unlike time-delay embedding: simple partitions do not
generically reconstruct the dynamics. Are the ad hoc
partitions often used still satisfactory? Unfortunately
they are often not so. Bollt et al. [4] examined the
degradation in the symbolic dynamics which results
from the frequently used empirical ‘‘histogram parti-
tion.’’ A suboptimal partition induces improper projec-
tions or degeneracies, where a single observed symbolic
orbit may correspond to more than one topologically
distinct state space orbit. This results in finding the wrong
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improperly merged. Mathematically, the ideal is a so-
called ‘‘generating partition’’ (GP), where symbolic orbits
uniquely identify one continuous space orbit, and thus
the symbolic dynamics is equivalent to the continuous
space dynamics. Unfortunately there is no satisfactory
general theory saying how to find a GP, except for one
dimensional maps (d � 1), where one partitions at the
critical points (minima, maxima, or discontinuities).
Additionally, there is significant work on a class of chaotic
communication schemes, where one targets specific orbits
with small perturbations [5]. These optimally make use
of a GP so that a digital transmission can be controlled to
a unique orbit. Implementations so far have used only
nearly d � 1 dynamics, perhaps because GPs were not
known for higher dimensional oscillators.

For symbolic data analysis and experimental chaotic
communication, a method to approximate good partitions
from realistic observed data alone —not knowing the
equations of motion—is urgently needed, and is the
problem we attack. Davidchack et al. [6] recently de-
scribed a partition algorithm which successively colors
unstable periodic orbits (UPOs) to ensure unique codings
(all UPOs have unique codes under a GP). This is practical
if one already knows the dynamics, as the necessary
high-order UPOs are very difficult to obtain from ob-
served data alone. Reference [7] gives a similar method.

Any partition P of a stationary dynamical system
yields a symbol stream which has a (P -dependent)
Shannon entropy rate h. The supremum of h—in the limit
over all increasingly fine (high-alphabet) partitions—
gives the dynamically invariant Kolmogorov-Sinai (KS)
entropy rate hKS. More strikingly, a GP also achieves this
supremum with a finite, and, one hopes, small alphabet
and simple partition. This suggests maximizing a statis-
tical estimator of h, ĥh, over candidate partitions [8]. This
apparently sensible algorithm is flawed as demonstrated
by the following counterexample. Consider a partition
of the state space with a fine box size 	 where each region
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sufficiently small 	, any finite length symbol sequence
will be indistinguishable from a memoryless information
source with the maximal rate h � logA, as each datum
could have encountered a different partition element with
a new random symbol. With the maximum possible en-
tropy, this partition would be selected over competitors
but is clearly wrong as the symbol stream says nothing
about the original dynamics. Beyond this extreme case,
there are other practical issues. First, estimation of h
(asymptotic rate, not block entropy) is not trivial to do
well. Second, with observational noise larger alphabets
will inevitably appear to give significantly higher entro-
pies even if they are not actually much better at encoding
the dynamics. As the true entropy rate of the system is not
already known (often a quantity one wants to estimate
given a good partition), there is no absolute statistical
target which confirms whether the proposed partition is at
all close or far from the ideal. Selecting partitions with
entropy estimates seems to fail in our practice.

In place of entropy, we assert our criterion for a good
partition: short sequences of consecutive symbols should
localize the corresponding continuous state space point as
well as possible. A useful partition maintains the benefits
of a low-precision symbolic representation with mini-
mum distortion of the original state space dynamics.
Our idea is to form a geometrical embedding of the
symbolic sequence under the candidate partition and
evaluate, and minimize, a statistic which quantifies the
apparent errors in localizing state space points.

We embed the symbol sequence into the unit square [9]:

y i �

 Xkmax

k�1

si��k�1�=Ak;
Xkmax

k�1

si�k=Ak

!
(1)

(kmax is chosen so A�kmax is as small as the computational
precision). For A � 2, the first coordinate of yi is the
binary fraction whose digits start at si and go backwards
in time, the second is with the sequence going forward
from si�1. The distribution on y is like a P -dependent
symbolic version of the invariant measure.

Given xi and a partition P , the symbolic embedding (1)
yields a parallel series yi, defining points on some map
y � �P �x�. We want �P to be injective, i.e., �P �x� �
�P �x0� implies x � x0. With finite data, we desire that if
k�P �x� ��P �x0�k is small, so is kx� x0k. By construc-
tion, sufficiently near points in x have close symbolic
sequences in their most significant digits. In a good
partition, additionally, nearby points in y remain close
when mapped back into the x space. By contrast, bad
partitions induce topological degeneracies where similar
symbolic words map back to globally distant regions of
state space, the problem described in [4].

We quantify how well any candidate partition achieves
our ideal. We find the nearest neighbor, in Euclidean
distance, to each point yi. Conventional k-d tree algo-
rithms [10] efficiently provide the index of the nearest
neighbor to any point in a data set, denoted N 	i
 �
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argmink�ikyk � yik. We find the distance of those same
two points back in x space, Di � kxN 	i
 � xik. We nor-
malize the set of Di by a monotonic transformation:
given any D, find its rank R 2 	0; 1
 in the cumulative
distribution of random two-point distances kx� � x�k.
Large R means that localizing well in symbol space did
not localize well in the original state space.

Better partitions give fewer symbolic false nearest
neighbors, i.e., a smaller Jsfnn, defined to be the proportion
of the Ri greater than some threshold �. This resembles
the false neighbors statistic for time-delay embeddings
[11]: both count large-deviation ‘‘mistakes’’ in a related
space which result from topological misembedding in the
tested space. Appropriate values for � which define a
macroscopic deviation are � � 0:01–0:3, depending on
the noise in xi. An alternative statistic is Ksfnn, defined to
be the arithmetic average of the largest � percentile of the
set of Ri. Using Jsfnn, � may need tuning depending on the
noise scale and dynamical system, but the effect of vary-
ing � is lower. On the downside, Ksfnn does not neces-
sarily converge to near zero for the optimal partition. We
typically find good results with � � 0:01–0:05, that is,
averaging the largest 1%–5% of the Ri. The thresholds
should be set so that the best P gives as few Ri as possible
above the size of the effective noise in x, � in particular
one might view as the largest reasonably expected noise
plus nearest neighbor distance. The interpretation of � is
less clear but the method is less sensitive to �.

For concrete calculations, we represent P with a small
number of free parameters. Inspired by [6], we define
partitions with respect to a mA sized set of radial-basis
‘‘influence functions,’’ fk�x� � �k=kx� zkk2, each with
a preassigned associated symbol Sk. For each x, one fl�x�
will generically result in a larger value than all other
fk�x�, k � l. Then P �x� � Sl. The set of � and z are the
free optimization variables, constraining � � 0. The z
are initialized to random selections from xi, the � to
random variates in 	0; 1�. There are m functions assigned
to each of the A symbols of the alphabet. In [6] the zk were
fixed on the UPOs and their symbols varied; here, the zk
and �k vary freely but the Sk remain fixed. We minimize
Jsfnn or Ksfnn over the mA�d� 1� free parameters using
‘‘differential evolution’’ [12], a genetic algorithm suitable
for continuous free parameters.

Figure 1 shows the final P on 2000 data points from the
Ikeda map [13]. It shows the best result (lowest Jsfnn) out
of six restarts changing only the random seed governing
the initial conditions (the results were not much worse on
the other runs, however). Our result is very close to the
partition knowing the dynamics.

In a stationary information source, the number of dis-
tinct length-p code words will scale, for asymptotic p,
as Np / ehTp where hT is the topological entropy, a dy-
namical invariant. We validate P with an estimate of the
deficiency between hT implied by P and the correct hT :
�hT � p�1

max

Ppmax
p�1 p

�1 log�Np= ~NNp�. Np is the number of
distinct period-p UPOs (computed knowing the equations
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FIG. 3 (color online). Minimizing Ksfnn with � � 0:01: esti-
mated partition for a time series of 5000 data points from the
Lozi map with 10% additive by amplitude Gaussian noise.
Either the x1 or x2 axes are GPs for the noiseless map. Here
despite the noise the algorithm finds a partition close to what
would be a GP.

FIG. 1 (color online). Left: partition estimated by Jsfnn opti-
mization on 2000 data points from the Ikeda map. Right:
partition calculated with foreknowledge of UPOs, numerically
extracted from the equation of motion. The partition we esti-
mate from observed data alone is quite close to a presumably
correct partition, calculated from the method of [6]. The
measure on the two figures is not the same: the left-hand figure
is a sample of the natural measure, whereas the right-hand
figures shows UPOs up to period 16. They avoid regions of
homoclinic tangencies, contributing to the blank spaces.
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of motion), ~NNp the number of such UPOs with unique
p-symbol codes under some P . A GP gives �hT � 0, with
�hT ! 0 for better (less UPO-degenerate) partitions.
Figure 2 shows �hT on each new best partition found
during the optimization. The optimization target, Jsfnn,
decreases monotonically by construction; though �hT
does not decrease perfectly monotonically, the trend to-
ward zero is evident. This gives evidence that minimizing
Jsfnn also refines approximations to GPs.

Figures 3–5 demonstrate applications of the algorithm.
Figure 3 shows the effect of noise on a system where the
GP is analytically known. The Lozi map (see analysis in
[9]) is similar to the Henon map but replaces the quadratic
nonlinearity with a piecewise linear one. We find a parti-
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FIG. 2. For each new best partition: minimization target Jsfnn
(circles, left-hand scale), estimated deficiency in topological
entropy �hT (asterisks, right-hand scale). Minimizing Jsfnn
minimizes �hT , maximizing topological entropy.
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tion which is close to the noise-free GP even when the
data have been contaminated by significant amounts of
additive noise. Figures 4 and 5 show estimated partitions
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FIG. 4 (color online). Top: estimated P for interbubble time
intervals [16] (arbitrary units), minimizing Ksfnn. Note that
partitions may have the same symbol in multiple regions.
Bottom: Jsfnn��� vs � for the optimized partition (circles)
and for a naive equiprobable histogram partition with the
same alphabet (asterisks). For the optimized partition there
are very few large distance errors, e.g., Jsfnn observed above
� � 0:1.
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FIG. 5 (color online). Same as Fig. 4 but with combustion
engine heat release [17] time series (energy, arbitrary units),
and A � 3. The noise level is higher thus there remain more
moderately sized distances, even with a larger alphabet which
usually results in better localization.
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on experimental data sets where no analytical form of the
equations (much less partitions) are known. Because of
noise, dynamical or observational, a certain level of
divergence D for symbolic nearest neighbors is inevitable,
but minimizing large deviations is still a useful goal.
There are very few rank distances with R � 0:2 or 0.3
compared to a basic histogram partition.

It must be kept in mind that GPs are not necessarily
unique. The optimization algorithm may find distinct
partitions, all of which are reasonably satisfactory. (At a
minimum any iterate of a GP is also a GP). There are
coexisting solutions, which is why the optimization prob-
lem requires a global search. We conjecture this is one
reason that understanding the geometrical diversity of
generating partitions has been difficult (e.g., [14]). Well-
localizing partitions for nonchaotic periodic or quasiperi-
odic data can also be estimated, but there may be many
equally good solutions without additional constraints.
In summary, we demonstrate a practical algorithm
to estimate good symbolic partitions from time series
of observed state vectors. It addresses the topological
degeneracy problems demonstrated in [4]. It does not
require computation of local derivatives to estimate
homoclinic tangencies nor accurate enumeration of
high-order UPOs, making it feasible for realistic data
sets [15].
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