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Cavity Solitons in Two-Level Lasers with Dense Amplifying Medium
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Local-field effects are known to induce bistability in dense optical media. We examine theoretically
whether this property is preserved in broad-area cavities, and show that bistability between the
homogeneous lasing and nonlasing states of the system persists provided a Fourier filtering technique
is used to prevent off-axis emission. The resulting bistability gives rise to spatial light localization in
the form of cavity solitons, which exhibit a particularly large degree of plasticity as a function of the
characteristics of the addressing beam. This is the simplest laser able to sustain cavity solitons.
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Spatial solitons are nonspreading light beams which
propagate through certain nonlinear media while keeping
their transverse cross section unperturbed, due to a
precise compensation of the naturally occurring beam
diffraction with material-induced self-focusing [1].
These structures have potential technological applica-
tions in communications and information processing
[2]. Besides propagation, a natural interest lies in the
generation and storage of these structures. To that end,
recent efforts have been addressed to confine spatial
solitons within optical cavities. Cavity solitons have
been predicted [3] and observed experimentally [4] in a
large variety of passive (i.e., externally driven) optical
media. Undoubtedly, it would be highly desirable to gen-
erate localized structures in amplifying cavities (i.e., in
lasers). However, so far laser cavity solitons have only
been shown to exist provided a passive element (a satu-
rable absorber) is placed within the cavity [5] or in the
presence of two-photon amplification [6]. In the present
Letter, we show that cavity solitons can also be generated
in simple, purely active two-level lasers, provided the
amplifying medium is dense enough to make dipole-
dipole interactions important, which gives rise to local-
field effects [7].

The influence of local-field effects on the propagation
of coherent light beams through two-level systems has
been substantially studied in the past. In particular, local-
field corrections have been shown to give rise to a redshift
in the resonance line of the medium (known as Lorentz
shift) [8], and to produce intrinsic optical bistability [9],
effects which have both been verified experimentally
[10,11]. In this Letter, we study the effect of these cor-
rections in an amplifying medium placed inside an opti-
cal cavity; i.e., the coherent field is generated by the
atomic medium instead of being applied from the outside.
Recent studies have analyzed the influence of local-field
effects on temporal laser instabilities [12]. Here we con-
sider the spatiotemporal case of a broad-area cavity,
which will be shown to lead to the formation of cavity
solitons, provided an appropriate spatial filtering is used
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to prevent destabilization of the nonlasing state and
maintain bistability. An important peculiarity of the
resulting solitons is their high level of plasticity, which
allows a substantial control of the strength and shape of
the soliton by adjusting the properties (peak intensity and
width) of the addressing beam.

The interaction between a coherent beam and a dense
two-level medium can be described in a semiclassical
framework by a set of Maxwell-Bloch equations, which
in the rotating wave and slowly varying envelope approx-
imations can be written in the dimensionless form:

&= —oa+ippy +iaVia, (1a)
d = b(r — d) — 4Im(ap})), (1b)
p()l = _[1 + l(AC + Ld)]p()l - tad, (IC)

where 2« is the Rabi frequency of the generated field, py,
is the atomic coherence between levels |1) (ground state)
and |0) (excited level), which is directly related to the
polarization of the medium [13], and d is the population
inversion of the transition. All field amplitudes and decay
rates are expressed in units of the relaxation rate vy, of
the coherence p(;, whereas time is expressed in units of
vy A, = (wp; — w.)/y, denotes the detuning between
the transition frequency and the cavity resonance fre-
quency. The transverse Laplacian Vi in Eq. (1a) accounts
for light diffraction in the plane transverse to propagation.
The diffraction coefficient is a = ¢?/(2w w3y, ), where ¢
is the speed of light and wy is the beam waist [14]. The
cavity decay rate o, the pump rate r, and the decay rate of
the population inversion b are considered to be uniform in
the transverse plane.

In high-density media, the microscopic electric field
acting locally on the material differs from the macro-
scopic field. In the framework of the semiclassical laser
theory, this difference leads to a nonlinear shift in the
frequency of the atomic transition, which originates
the local-field correction (LFC) term added to Eq. (Ic).
This nonlinear detuning, A® = Ld, is the Lorentz shift.
The LFC parameter has the form L = py, /3w,, where
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p = I1 /11, is the ratio between the density of the active
medium II and a reference value II,, which is the one
included in the normalized variables via the gain parame-
ter [15]. We note that we have chosen a normalization
different from the standard one [12] in order to make the
dependence of the LFC parameter on the atomic density
explicit.

In the case of a weak probe field the population differ-
ence, and hence the resonance-line shift, is practically
constant for all detunings. This is the well known case of
the static Lorentz shift. When the coupling field is not
applied from the outside but is generated by the active
medium, the population difference depends on the gen-
erated intensity: the highest intensity corresponds to the
lowest population difference, i.e., the population differ-
ence at threshold. This population distribution gives rise
to the dynamic Lorentz shift shown in Fig. 1(a), which
represents the steady-state intensity versus cavity detun-
ing for two different values of the local-field correction L
in the absence of transverse effects (¢ = 0). With a fixed
p, L can be varied by changing v and/or w.. Note that
for large values of L the shift of the peak intensity is
rather small, but the displacement of the basis of the line
(where the population inversion is maximum) is very
large. Such large L can be obtained experimentally, for
instance, in gas lasers operating in the far-infrared.

The steady-state solutions represented in Fig. 1(a)
can be obtained from the Maxwell-Bloch equations (1)
with a = 0, which leads to an implicit equation for
the imaginary part y,; of the atomic coherence: 0 =
yoi[A + By}, + Cy¢,], where A= (1+ 0)*(o — pr)+
o(A, + Lr)?, B=4bp[—2Lo(A.+ Lr)+ p(1 + 0)?],
and C = 16L?p>. This equation has a trivial solution,
vyo1 = 0, corresponding to the nonlasing state a™ = 0,
po; =0, d" = r. The biquadratic equation has at most
four mathematical solutions (yg, = *./f;, *./f;), repre-
senting only two different physical states (due to the
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FIG. 1. (a) Intensity of the generated field as a function of the
cavity detuning for p = 250, 0 = 0.5, b = 0.5, r=0.1,a = 0,
and different values of the LFC parameter: L = 0 (dotted line)
and 150 (solid line for the stable part, dashed line for the
unstable one). The vertical dot-dashed lines indicate the limits
of the bistability region for the last case. (b) Corresponding
limits A.; and A, of the bistability region (grey area) as a
function of the LFC parameter.
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invariance of the model under a sign change of the
coherent terms). When two different and positive values
t; and f, exist, the system exhibits three steady-state
solutions. The cavity detuning range in which these three
solutions appear is given by A, <A, < A_,, where

—Lr+(1+0) ﬂ—1,
o

Acl
2
p(l+0)? Lo @

4Lo P

Note that only A., depends on the pumping rate r, and
that for a fixed value of the local-field correction there is
always a threshold value of r above which the bistability
region appears. In this region, the lasing solution with the
highest intensity and the nonlasing solution are stable,
while the other lasing solution is always unstable [12].
Therefore, the region given above corresponds to a bi-
stability region. For the parameters of Fig. 1(a) with L =
150, the limits of that region are givenby A,; = —4.5 and
A, = 1.6. Figure 1(b) shows the limits of the bistability
region as a function of the LFC parameter L, for a fixed
value of the gain parameter. One can see that there is
a minimum value L, above which bistability occurs,
which can be easily obtained imposing A, = A,, in
(2), leading to Ly, = p(1 + o)/ /4o (pr — o).

In the presence of transverse diffraction, the system
can develop a lasing solution with a small wave vector
component transverse to the cavity axis [16]. Therefore,
let us consider now the stability of the nonlasing solution
versus a perturbation in the form of a transverse traveling
wave (a = dae'®¥ @) p, = §pelk¥-ol g = 5d),
where the wave vector k and the position vector X are
perpendicular to the laser cavity axis. A linear stability
analysis of the nonlasing solution in front of perturba-
tions of this type indicates that, for a given value of k, the
region where the trivial solution becomes unstable is r;, <
r < ry,, where the pump limits are given by the neutral
stability curves:

. —2Lo(A.—ak®)+ p(1+0)?
"th ™ 2L%0
L+ oW —4Lpo (A, —ak?) —4L*0? + p*(1 + 0)?
N 2L%0 '

ACZ =

3)

Note that for negative cavity detunings the minimum of
1y, occurs always at k = 0, as in the absence of LFC [14].
Figure 2 shows the boundaries (3) of the instability
region for L = 150 and a negative detuning A, = —1.5,
for which, according to Fig. 1(b), a bistable behavior is
expected. Above the lower neutral stability curve r, the
trivial nonlasing solution destabilizes, choosing at
threshold a wave number k = 0, since the minimum of
ry, occurs at this wave number value. In the striped region
above r:[], the off state becomes stable again (but now
only versus perturbations with wave number included
within such a region) and coexists with the solution that
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FIG. 2. Neutral stability curves for p = 250, 0 = 0.5, A, =
—1.5, a =0.01, and L = 150. In the white region only the
nonlasing solution exists, in the gray region that solution is
unstable versus perturbations of wave number k, and in the
striped region the nonlasing and off-axis solutions coexist. The
wide horizontal lines represent the Fourier filter to be discussed
later in the text.

originated in r,, for which the wave number is still
around 0, since this is the wave number with highest gain.

It is well known [2] that the coexistence between two
spatially homogeneous solutions can give rise to spatial
solitons in optical cavities. In our case, however, the
bistable striped region in Fig. 2 cannot be reached in
practice, since at any given pump rate r in the striped
region, the nonlasing solution is destabilized by pertur-
bations with transverse wave number k within the gray
region. In order to maintain stability of the zero solution,
and hence the possibility of generating cavity solitons in
this laser, one can prevent the growth of such large wave
numbers by means of a low-pass spatial filter. This filter
can be implemented in practice by placing a diaphragm in
a far-field plane built inside the laser cavity [17]. Such a
filter would keep the nonlasing solution stable, and bi-
stability between this solution and the lasing state would
allow the generation of cavity solitons. We have checked
numerically that this is indeed what happens, as can be
seen in Fig. 3(a). This figure displays (in solid line) the
one-dimensional cross section of the intensity of a two-
dimensional cavity soliton generated by the model equa-
tions (1) in the presence of a sharp low-pass filter in
Fourier space with cutoff wave number |k|,,,, = 10 (rep-
resented in Fig. 2 by a wide horizontal line at the pump
rate used in the numerical simulations of Fig. 3). The filter
has been implemented numerically via a sharp-edge step
function, but more regular functions have been seen to
lead to identical results, provided the filter is not too
smooth to allow the growth of the unstable wave numbers
within the gray region of Fig. 2. Simulations have been
performed in a square lattice of 256 X 256 cells of size
Ax = 0.05, using a spectral split-step algorithm with
integration time step Atz = 1073. The intensity profile
shows a clear localized structure in the center of the
lattice. The width of the soliton, measured in terms of
the full width at half maximum (FWHM), is in this case
0.39 spatial units, whose translation into physical units
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FIG. 3. (a) Horizontal cross section of a cavity soliton, in
terms of the intensity (solid line, left y axis) and the refraction
index shift (dashed line, right y axis). Parameters are those of
Fig. 2, plus b = 0.5 and r = 0.1. The Fourier filter has a cutoff
wave number ||« = 10. The seed is a 10-pixel-wide, sixth-
order super-Gaussian placed at the center of the lattice.
(b) Dependence of the peak intensity of the soliton on the
pump rate r.

depends on the laser frequency and beam waist through
the value of a as defined above, since this quantity freely
rescales the transverse dimensions of the model. The
dashed line in Fig. 3(a) represents the quantity As =
pRe(apy;)/lal?, which is proportional to n* — 1 [15],
where n is the index of refraction of the medium. The
abrupt increase in the index of refraction at the bounda-
ries of the soliton indicates that the light localization is
an index-guiding effect produced via self-focusing.

As mentioned earlier, in the presence of the Fourier
filter described above the system exhibits bistability be-
tween the nonlasing solution and a homogeneous lasing
state. The system chooses one state or the other depending
on the initial conditions. The transverse spatial behavior
shown in Fig. 3 is originated by seeding the soliton at the
center of the lattice with a super-Gaussian initial condi-
tion of sufficient intensity. A unique characteristic of
these cavity solitons with respect to similar structures
in other systems is that their strength as well as the shape
of their spatial profile can be modified by acting on
the width and shape of the seeding signal, as well as on
the profile of the spatial filter. We consider that this
happens because of the interplay between diffraction,
self-focusing (in particular, in the form of field-induced
index guiding in the relatively dense gain medium), and
spatial Fourier filtering. On the other hand, it is not
related with any modulational instability [18] of the
homogeneous lasing solution, since in our case (large
negative detuning and close to threshold) such a solution
is stable versus perturbations with nonzero wave number.

The dependence of the soliton characteristics with
the laser parameters has been systematically investigated.
In particular, the soliton peak intensity is plotted as a
function of pumping in Fig. 3(b). In that figure, the shaded
region corresponds to a pump range for which no
bistability exists (cf. Fig. 2), accordingly no solitons are
found numerically, and the laser exhibits a complex
transverse dynamics (since pumping is well above the
first lasing threshold, which is almost zero for this
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FIG. 4.

Intensity (left) and phase (right) profiles of three
coexisting localized structures. Parameters are p = 250, o =
b=0.5, A, =—15 a=001, L =50, r=0.8, and |kl =
14.

parameter’s values; see again Fig. 2). Within the bistabil-
ity region, the soliton maximum intensity is found to
increase linearly with pumping, analogously to what
happens in the standard case of Gaussian beams.
Interestingly, this L-I line can be extrapolated to the first
lasing threshold near zero [dashed line through the
shaded area of Fig. 3(b)]. On the other hand, the full width
at half maximum of the soliton is seen not to depend on r
(results not shown). The dependence of the soliton char-
acteristics on other laser parameters is not so pronounced:
in particular, the maximum intensity is basically in-
dependent of the local-field coefficient L, for instance
(results not shown).

Localized structures with circular symmetry, not al-
ways including a central brightest spot, or even multi-
hump structures, can also be generated and can coexist in
the transverse plane. As an example, Fig. 4 shows the
coexistence of a standard soliton with two doughnutlike
localized structures. Such “plasticity”” might be of inter-
est for information processing, and, in particular, to
control the interaction between neighboring cavity soli-
tons or for the formation of bounded solitonic structures.

In conclusion, we have shown that, contrary to com-
mon belief, two-level lasers are able to generate and
sustain cavity solitons, provided the amplifying medium
is dense enough to make local-field effects important.
These effects induce a bistability in the laser, which can
be preserved in the presence of transverse diffraction by
introducing a low-pass spatial Fourier filter within the
cavity. Such filters (including filters based on spatial
diffusion of saturated gain [19]) have already been used
in the past to control the spatiotemporal dynamics of
optical systems [20] and, in particular, of localized opti-
cal structures [19,21]. However, as far as we know,
Fourier filtering had not been used so far to generate
localized structures themselves, as reported here. This
mechanism of soliton formation provides an alternative to
more standard mechanisms such as those based in semi-
conductor or Kerr nonlinearities [4], but relies like them
on the existence of a bistability in the system. On the other
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hand, it leads to solitons which are completely address-
able and, in contrast to other cavity solitons known so far,
their characteristics (peak intensity, size, and shape) can
be controlled by the addressing beams and by the profile
of the low-pass spatial Fourier filter. Multihump solitons,
for instance, appear for wide enough initial injection
beams.
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