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Numerical and theoretical evidence leads us to propose the following: Three-dimensional Euclidean
Yang-Mills theory in the planar limit undergoes a phase transition on a torus of side [ = /.. For [ > [,
the planar limit is / independent, as expected of a noninteracting string theory. We expect the situation

in four dimensions to be similar.
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Introduction—Yang-Mills theory in three dimensions
is similar to Yang-Mills theory in four dimensions in
exhibiting a positive mass gap, linear confinement, a
finite temperature deconfinement transition, and a sen-
sible large-N limit [1].

Non-Abelian gauge theories in three and four di-
mensions interact strongly at large distances and weakly
at short distances. Doing calculations that bridge these
two regimes remains a major challenge, of central im-
portance to particle physics. It has been a long held hope
that the task would simplify at infinite number of colors,
N. Here, at strong coupling, a fitting hypothesis is that the
theory describes free strings, while at weak coupling, the
theory certainly describes weakly interacting particles.
The result of this Letter indicates that strong and weak
coupling are separated by a phase transition at infinite N.
Specifically, we provide numerical evidence that SU(N)
gauge theory on a three torus of side / undergoes a
transition at a critical length, I = [.. For any finite value
of N there cannot be any phase transitions in this system.
The existence of such a transition at infinite N is surpris-
ing, raises questions about the usually assumed smooth
dependence of observables on momenta, and might in-
dicate deeper connections between gauge theory, string
theory and random matrix theories.

Over twenty years ago, in the context of SU(N) lattice
gauge theory, Eguchi and Kawai [2] made the observation
that at an infinite number of colors space-time can be
replaced by a single point. This dramatic reduction in the
number of degrees of freedom should make it easier to
deal numerically with planar QCD than with ordinary,
three color QCD. For a practical procedure it is essential
that some version of large-N reduction also hold in the
continuum, not just on the lattice. Previous attempts to
define a continuous reduced model had problems with
topology and fermions [3].

We focus on the continuum limit of pure lattice YM
defined on a torus and try to establish that expectation
values of traces of Wilson loop operators do not depend
on the size of the torus. Wilson loops of arbitrary size can
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be folded up into the torus and correctly reproduced [4].
The lattice is essential because it provides a regulariza-
tion with well defined loop equations [5]. Loop equations
provide a convenient tool to establish reduction.

We restrict ourselves to three-dimensional theories for
numerical reasons. We find that continuum large-N reduc-
tion holds so long as the torus is large enough. The critical
side length of a symmetrical torus is denoted by /. and is
defined in terms of a microscopic fundamental physical
scale of the theory. Solving the theory for some [/ > [,
would produce complete and exact information at leading
order in N for any /. The system as a whole undergoes a
phase transition at [ = /.. The number of sites in a nu-
merical simulation in a given direction, L, determines the
maximal value the ultraviolet cutoff A can take. Itis A =
(L/1.). For a Wilson action the lowest L that has some
semblance to continuum is L = 3. Thus, at the expense of
larger N one can get numerically close to continuum
using very small lattices. The values of N needed are of
the order of 20 to 50 and this trade-off is worth taking.

If a similar result holds in four dimensions, a shortcut
to the planar limit becomes a realistic option. Our expe-
rience makes us hopeful and our tools should allow us to
tackle four dimensions in the future.

A lattice argument.—There is a global Z4(N) [U4(1) in
the N — oo limit] symmetry on the torus that leaves
contractible Wilson loop operators invariant but multi-
plies Polyakov loops winding around a direction w by a
phase e@7/Nk. The preservation of this symmetry is
crucial for large-N reduction [6]. Eguchi and Kawai
have shown that the lattice loop equations in the N = oo
limit on a single site lattice are the same as on an infinite
four-dimensional lattice as long as the U*(1) symmetry is
unbroken. The continuum limit in the single site lattice
model has to be taken by sending the lattice coupling b =
(1/g%N) to infinity, but in d > 2 a phase transition occurs,
blocking the way. At the transition the Z¢(N) symmetry
breaks spontaneously, ruining the equivalence of loop
equations. It is possible to fix the single site lattice model
by quenching [3,6] or twisting [7] the system. We take a

© 2003 The American Physical Society 081601-1



VOLUME 91, NUMBER 8§

PHYSICAL REVIEW LETTERS

week ending
22 AUGUST 2003

BITITYY |
fgﬁﬁéwﬁﬁfﬁ thisy
¥ 3 ity A

ﬁ %¢%mg$?ﬁﬁ

.

0.4 L L
0 0.2 0.4 0.6 0.8 1

eigenvalue: 6/n

FIG. 1. Eigenvalue density distribution of a 4 X 4 Wilson
loop on 43 (folded) and 6° (unfolded) at » = 0.66 and N = 23.

different approach here. The proof of Eguchi and Kawai
goes through for a lattice torus of size [; X [, ... with
arbitrary /,, and in any dimension. The loop equations,
together with boundary conditions for small loops, estab-
lish equality of expectation values of traces of operators
associated with arbitrary finite closed loops in the infinite
volume theory and their folded, contractible, counter-
parts on the torus. Suppose we reduced the model to
only an L9 lattice with L > 1: Again we expect the global
symmetry to break if b > b,(L) and reduction will hold
for b < b.(L). b.(L) will increase with L and if b.(L)
depends asymptotically on L as dictated by microscopic
scaling for d = 3,4 then continuum large-N reduction
will hold if we take the limit by keeping b < b.(L) and
taking b — 0.

In the approach pursued here, we have to deal with one
lattice artifact. There will be a crossover in the lattice
internal energy for the Wilson gauge action at some small
b for a finite torus size and a finite N. The crossover
becomes a “‘bulk” transition at infinite N, occurring at
bB(N = oo, L) for any finite lattice of size L? in lattice
units. Lattice large-N reduction would imply that b3(N =
o0, L) does not depend on L, bB(N = oo, L) = bB®. This is
consistent with numerical simulations. The loop equa-
tion, together with constraints which come from the
parallel transporters being unitary matrices, produce
the bulk transition without loosing their validity or
changing their form. The lattice transition occurs when
the unitary matrix associated with the one by one loop
opens a gap at eigenvalue —1 in its spectrum in the
large-N limit. As b increases further the gap widens. In
the continuum this means that parallel transport around a
tiny loop will not differ much(in norm) from the identity.
Similar transitions occur at bZ(N,L = oo) for large
enough N. The common limiting value at b3(N = oo,
L = o0) = b8 is rapidly approached. This family of
transitions are lattice artifacts not associated with any
symmetry breaking. Examples are the Gross-Witten [8]
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transition in two dimensions and Creutz’s transitions [9]
for N > 4 in four dimensions.

Even though lattice reduction is valid on either side of
bB(N = oo, L) as long as one is below b.(L), we have to be
above bB(N = oo, L) to realize continuum reduction. For
L =1 (the Eguchi-Kawai model) and d > 2, the infinite
N bulk and Z¢(N) breaking transitions accidentally fuse
at a b, # b5®. Similar “accidents” can happen for L =
2,3..., but a window opens for large enough L between
b%* and b.(L). In three dimensions, an L = 3 lattice
already has a window.

bB® = 0.5 [8] and b.(L) = 00 in d = 2. The U*(1)
symmetries are not broken and continuum reduction
works on tori of any size in two dimensions. The bulk
transition occurs close to b5° = 0.4 in d = 3. Ordinary
scaling in d = 3 would require L/b.(L) to approach a
finite nonzero limit as L — oo. Monte Carlo simulations
were performed using a combination of heat-bath updates
by SU(2) subgroups and of full SU(N) over-relaxation
steps. Ultraviolet fluctuations in loop observables were
suppressed by APE blocking [10]. We monitored the ei-
genvalue distribution of the Polyakov loops in the three
directions and found that 0.6 <b.(3)<0.7, 0.8<
b.(4) <09, 1.0<b.(5)<1.2, and 1.2 <b.(6) < 1.35.
When combined, these results indicate that the scaled
critical coupling L/b.(L) is in the region [4.2,5]. We
compared folded and unfolded versions of the same
loop on tori of different sizes and found the spectral
densities associated with them to match as long as
[L/b(L)] = 5. An example of such a comparision is
shown in Fig. 1. We also checked scaling by comparing
Wilson loops of the same physical size at different lattice
spacings. An example of scaling is shown in Fig. 2.

Continuum perturbation theory—If we had a scalar
field theory where the field is a Hermitian N X N matrix
we know that independence on the torus size is impos-
sible. This dependence does not go away in the planar
limit. On the level of Feynman diagrams (taken in
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FIG. 2. Eigenvalue density distribution of L X L Wilson loop
on L3 for L/b=5and L =4,6. N is set to 23.
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coordinate space) it is easy to calculate the dependence on
torus size for large /, in particular, if the theory is massive
[11]. The leading correction is exponentially suppressed
in [ and comes from one virtual particle going around a
noncontractible circle on the torus. There is a stable
particle like that and it is in the adjoint representation
of SU(N). In the gauge case, if there is confinement, we
could use only singlets under SU(N) and, at infinite N,
these singlets make subleading contributions to the free
energy at leading, O(N?), order. We conclude that for a
confining gauge theory a planar diagram with a ribbon
(double-line) representation of propagators makes no con-
tribution if one tears one of the propagators out of the
surface and winds it around the torus.

Another way to see how reduction works in perturba-
tion theory is to understand what happens to momentum
space [6]. Having a torus means that momenta are quan-
tized in units of 277/1 and there is no way around this
for a massive scalar matrix field. In the gauge case
the Feynman expansion starts from a constant gauge
field background. The gauge invariant content of this
moduli space consists of d sets of angles 0; which
effectively fill the intervals between the quantized
momenta making momentum space continuous and [
independent. The filling has to be uniform and this is
true at infinite N if the global Z¢(N) symmetry is un-
broken. The background—in a translation invariant
gauge—is given by A, = diag(6},, 62, ..., 6%) but only
the set {e“0, e!% ..., "%k} labels truly distinct vacua.
This is why IHLI < 7, exactly as needed to fill in the gaps
between the (27k/[)’s. At infinite N the vacuum is char-
acterized by d eigenvalue distributions on the complex
unit circle.

Hints from string theory—In view of developments
during the last few years [12] it seems more likely now
than ever before that indeed large-N SU(N) pure gauge
theories are equivalent to some string theory at zero
string coupling. This means that the logarithm of the
partition function defined on a finite torus and divided
by the volume of the torus, is, in the planar limit, given by
a sum of extended, spherical, two-dimensional excita-
tions embedded in the same torus. But there is no way
for the spherical surface to become noncontractible on the
torus and thus it cannot detect that target space is a torus
[13]. Hence, one can have no dependence on /. It is well
known that simple string models on toroidal backgrounds
cannot distinguish very large radii from very small ones;
l., as a minimal radius, realizes a similar phenomenon in
the unknown noninteracting string theory describing pla-
nar three-dimensional pure YM.

It used to be revolutionary to think that statistical field
theories on finite volumes can have phase transitions. This
is no longer true. To the early toy model examples [14] we
can add now cases of true, full fledged field theories with
real relativistic degrees of freedom, also developing
phases transitions in the planar limit [12].
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Large-N phase transitions.—Large-N transitions may
emerge as quite ubiquitous in continuum gauge theories.
There are transitions, such as the one presented in this
Letter, that affect the system as a whole, but there are also
other transitions that affect only a class of observables
[15-18].

The basic observables used in our study have been the
distribution of eigenvalues of Wilson and Polyakov loops.
For large N these observables are unconventional because
they involve traces of all powers of the basic unitary
matrix, not only a few low powers. Thus, issues of renor-
malization require more work [19]. If these issues can be
resolved, we might be able to exploit the fact that eigen-
values of large matrices have many universal properties
[20]: The dynamics of the gauge theory could be encoded
in the transformations one needs to carry out in order to
bring these eigenvalue distributions to universal forms.
While there are difficulties in continuum perturbation
theory, the situation on the lattice is very clear: We
numerically look for features that scale as the universal
features of the field theory would have it.

The simplest strong-weak transition would be associ-
ated with Wilson loops: Small loops will have parallel
transporters with a spectral gap and big loops will have
almost uniform distributions to account for confinement
in all finite irreducible representations. At finite N there
are no gaps in the spectra but, in the range of the would be
gaps, the eigenvalue density is exponentially suppressed
as N increases.

Beyond the transition.—For [ just a bit smaller than /.
exactly one of the Z(N) factors in the Z3(N) breaks
spontaneously. Thus, the 40 eight element cubic symme-
try group of our equal sided torus breaks down to an
eight-dimensional group acting in the plane perpendicu-
lar to the direction in which the Polyakov loop spectra
took on nonuniform structure.

In order to prepare ourselves for what to look for when
the torus is further squeezed we studied the 1¢ EK model,
now interpreted as a simple effective model for the dy-
namics of the vacuum manifold of the full system.
Simulations we have carried out in three and four dimen-
sions showed that at infinite N these models undergo a
staircase of transitions, breaking one additional Z(N)
factor at a time. The possible continuum meaning of
the various intermediate phases will have to wait for
more work.

In supersymmetric YM gauge theories, compactified
supersymmetrically on tori, the perturbative mechanism
driving the spontaneous breaking of the Z¢(N) symmetry
can be eliminated. Beyond perturbation theory we do not
know the answer, and other global symmetries come into
play. It is conceivable that in some cases /. = 0, indicative
of a pure matrix model representation of the planar limit
of a continuum gauge theory. Although the physical size
is zero, regularization issues might require one to take
L — o0 in a way correlated with b — o0, and the zero size
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model may not admit a definition as the large-N limit of
an ordinary matrix integral.

Future lattice work.—Building on earlier two-
dimensional work we know how to calculate meson
propagators in the planar limit. Meson momenta of values
below the ultraviolet cutoff can be introduced by multi-
plying the original link matrices U, (x) by phase factors
e'Pr. The p, allow one to tune the momenta carried by
the mesons to desired values. One has no finite volume
effects to worry about: to get to the continuum limit one
just increases b, making sure that / stays larger than /..
Values of N in the range of few tens seem to be adequate.
The lattice Dirac matrices are much smaller (and much
denser) than in usual simulations. We would be able to
address the smoothness of the two point meson correla-
tion function, at infinite N, as a function of ¢2, where ¢ is
Euclidean momentum. Could there be a nonanalyticity at
some ¢>? After all, if the crossover between physical
strong and weak gauge forces happens in a range of scales
that shrinks to zero at infinite N, phase transitions may
occur in every observable, not only special ones, like
Wilson loops. In four dimensions this could, finally, bring
about a peaceful coexistence between large N and instan-
tons [21].

In parallel simulations of the pure gauge case, large-N
work will require a floating point effort per node that
grows as N* while communication demands will only
grow as N2. So, PC farms with off the shelf communi-
cations would be well suited.

Conclusions.—Our final conjecture about three dimen-
sions is stated in the abstract. We call it a *“‘conjecture”
because our numerical tests have been relatively modest
and because the consequences of the conjecture could be
far reaching: many applications of 't Hooft’s large-N
limit [22] assume analyticity in momenta and this as-
sumption is now challenged. Our evidence is a combina-
tion of numerical work and more theoretical observations.
On the numerical side we see the Z*(N) symmetry break-
ing point on the lattice change with lattice size in a way
consistent with continuum scaling. Theoretically, lattice
large-N reduction based on large-N loop equations is a
strong coupling argument while averaging over the mod-
uli space of constant Abelian connections at weak
coupling resolves an apparent contradiction with conven-
tional wisdom about finite size effects.
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