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The spectral principle of Connes and Chamseddine is used as a starting point to define a discrete
model for Euclidean quantum gravity. Instead of summing over ordinary geometries, we consider the
sum over generalized geometries where topology, metric, and dimension can fluctuate. The model
describes the geometry of spaces with a countable number n of points, and is related to the Gaussian
unitary ensemble of Hermitian matrices. We show that this simple model has two phases. The
expectation value hni, the average number of points in the Universe, is finite in one phase and diverges
in the other. We compute the critical point as well as the critical exponent of hni. Moreover, the space-
time dimension � is a dynamical observable in our model, and plays the role of an order parameter. The
computation of h�i is discussed and an upper bound is found, h�i < 2.
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trade the original Riemannian geometry for its corre- with finite commutative spectral triples. We will think of
The quest for a quantum theory of gravity is one of the
major goals in contemporary research. Any attempt in
this direction involves the understanding of the space-
time structure at a very short distance. It is generally
believed that at the Planck scale space-time may not be
described by a manifold [1]. The conventional geometri-
cal setting of general relativity seems to be inadequate to
describe the nonmanifold microstructures of space-time.
Since the manifold structure has to appear at some macro-
scopic limit, it is natural to expect that one needs a
generalization of ordinary geometry, such as noncommu-
tative geometry (NCG), rather than a completely new
formalism.

The basic idea coming from NCG [2] is that one can
describe a Riemannian manifold �M;g��� in a purely
algebraic way. There is no loss of information if, instead
of the data �M;g���, one is given a triple �A;H ; D�,
where A is the C* algebra C0�M� of smooth functions on
M, H is the Hilbert space of L2 spinors on M, and D is
the Dirac operator acting on H . From the Gelfand-
Naimark theorem it is known that the topological space
M can be reconstructed from the set ÂA of irreducible
representations of C0�M�. Metric is also encoded, and the
geodesic distance can be computed from D. Here we will
consider only commutative spectral triples — this is
enough to go much beyond ordinary geometry. In par-
ticular, one can treat all Hausdorff topological spaces
in this way. Given a pair �M;g���, one can promptly
construct the corresponding triple �C0�M�; L2�M�;D�.
However, not all commutative spectral triples, or gener-
alized geometries, come from a pair �M;g���.
Nevertheless, one can always associate a Hausdorff space
M � ÂA with a commutative spectral triple, where ÂA
denotes the set of irreducible representations of A.
However, the space M may not be a manifold. Once we
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sponding commutative triple we need a replacement for
the Einstein-Hilbert action SEH. The so-called spectral
action of Chamseddine and Connes [3] is one possible
candidate. It depends only on the eigenvalues of D and
contains SEH as a dominant term. In this paper, however,
we shall use another spectral action.

The spectral action can be written for any triple, re-
gardless of whether it comes from a manifold �M;g��� or
not. In the spectral geometry approach it is conceivable to
write the partition function

Z �
X
x2X

e	S�x�; (1)

where the ‘‘sum’’ is over the set X of all possible com-
mutative spectral triples and S depends on the spectrum
of D. It includes all Hausdorff spaces and therefore all
manifolds of all dimensions.

The framework of spectral NCG is appropriate to ex-
plore some difficult questions in quantum gravity. For
example, Rovelli used a simple dynamical model based
on a finite dimensional spectral triple to construct a
quantum theory with a quantized physical distance be-
tween points [4]. In our model we look at the dimension
as a dynamical quantity and study its expectation value.

The exact computation of (1) is a formidable task, not
yet accomplished. However, the algebraic approach sug-
gests ways of defining discrete approximations to the full
theory. For instance, one may replace the algebra A by a
finite dimensional algebra An. In this approach to discre-
tization there is no need to introduce a lattice or simplicial
decomposition of the underlying space. The approxima-
tion of A by a finite algebra works even if the spectral
triple does not come from a manifold. Thus, it gives us a
generalization of ordinary discretizations [5].

In this Letter we discretize (1) by sampling the set X
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it as a useful toy model, which we believe captures some
of the main features of the full one, Eq. (1).

The key role played by the eigenvalues of the Dirac (or
Laplace) operator in the spectral action approach was
emphasized in [6]. In our model they are also the natural
dynamical variables due to the connection with random
matrix theory (RMT). An important ingredient of the
model is that the number of points can fluctuate.
Moreover, in our simple model the space-time dimension
is a dynamical observable and its expectation value can be
computable from first principles.

Let us describe the ensemble X 
 X of geometries we
will consider. A point of x 2 X is a commutative spectral
triple x � �A;H ; D� where the commutative C* algebra
A has a countable spectrum ÂA. We divide X into sub-
spaces Xn consisting of triples �An;H n; D� such that
ÂAn has a fixed number n of points. From the Gelfand-
Naimark theorem it follows that elements of An are the
(possibly infinite) sequences a � �a1; a2; . . . ; an�, aj 2 C.
The Hilbert space H n is given by vectors v �
�v1; . . . ; vn� with norm jjvjj2 �

P
n
i�1 v

2
i <1. The ele-

ments of A are represented by diagonal matrices âa �
diag�a1; . . . ; an� acting on H n. Finally, the operator D is
a n� n self-adjoint matrix.We will sample the space X by
X1; X2; . . . ; XN and eventually take the limit N ! 1.

Let L be a length scale such that the operator D given
by D � D=L will be the analogue of the Dirac operator.
The Chamseddine-Connes action depends on a cutoff
function of the eigenvalues of D=L. The cutoff function
is zero for eigenvalues of D greater than L and one
otherwise [3,6]. In other words, the Boltzmann weight in
Eq. (1) would be one outside a compact region in the ei-
genvalue space, leading to a divergent partition function
[see Eq. (11)]. Let us consider a quadratic action instead:

S�x� � Tr

�
D

�

�
2
� �Tr�D2�; (2)

where � is the inverse of Planck’s length lp, and � �
�lp=L�

2. Finally, we define the partition function
ZN��� �

P
N
n�0 zn��� where

zn��� �
Z
�dD�e	� Tr�D2� (3)

is the partition function restricted to Xn, in other words,
an integral over all independent matrix elements Dij,
where �dD� is the usual measure for n� n Hermitian
matrices [7]. The partition function zn��� defines the
one-matrix Gaussian unitary ensemble (GUE) [7]. A
straightforward computation gives zn��� � 2n=2� �2��

n2=2.
The expectation values of an observable O�Dij� re-

stricted to Xn and for the entire ensemble are

hOin;� �
Z
�dD�Oe	� Tr�D2�=zn���; (4)
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hOi��� �
XN
n�1

P�n; ��hOin;�; (5)

respectively, where the function P�n; �� � zn���=P
nzn��� is interpreted as the probability of having a

universe with n points. The simplest observable in our
model is n, the number of points in ÂA. By definition, n is
constant in Xn, therefore hnin;� � n. Thus we get

hni��� �

P
n
n2n=2� �2��

n2=2

P
n
2n=2� �2��

n2=2
: (6)

The mean hni (‘‘average number of points in the uni-
verse’’) is not a continuous function of � at �c � �=2,
signaling the onset of a phase transition. Besides straight-
forward numerical calculation, there are other ways to
show that the sum (6) converges for � > �c and diverges
for �<�c. Consider, for instance, the approximation of
ZN��� in the limit N ! 1 by the first term of a Euler-
Maclaurin expansion,

Z��� � lim
N!1

XN
n�0

zn��� �
Z 1

0
dxe	�1=2�a�x2�bx �R���;

(7)

where a� � ln��=�c�, b � ln2=2. It is easily seen that

hni��� �
@
@b

lnZ���; (8)

neglecting the remainder R in (7) [8]. Equation (7) sug-
gests a nice interpretation. For � > �c (�<�c) the
quadratic term is positive (negative) and the integral
converges (diverges). The phase transition at � � �c is
triggered by the change of signal of a bilinear term in the
‘‘fields.’’ The integral in (7) can be solved in the region
� > �c. After expanding a� around the critical point,
a� � ��	 �c�=�c � . . . , we compute hni by means of
(8). The result is hni��� � ��	�c

�c
�	1 � $	1. Hence, for

� > �c the system is in a ‘‘finite’’ phase, characterized
by a finite value of hni. As � ! ��

c hni diverges with
a (mean field) critical exponent � � 1. The rms devia-
tion of hni may be computed, with the result �n ������������������������
hn2i 	 hni2

p
� $	1=2. However, the relative width of the

distribution, �n=hni, decreases like $1=2.
For �< �c the relevant universes have hni � 1 and

�n=hni � 0. For a 1-dimensional D one can define the
dimension � of the space ÂA from the eigenvalues of D.
Let f�0�D�; �1�D�; . . .g be the modules of the eigenvalues
(i.e., the singular values) of D organized in an increasing
order. By the Weyl formula [2], the dimension � is related
to the asymptotic behavior of the eigenvalues for large k:
�k�D� � k1=�. By definition � � 0 for finite dimensional
spectral triples. We can argue that h�i is of the form

h�i��� �
�
f���; if �<�c;
0; if � > �c:

(9)
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This follows from the fact that for � > �c the probability
P�n;�� is localized around some finite n. Hence h�iworks
as an order parameter. The value �c � �=2 separates
h�i � 0 from the rest.

In order to study the dimension we need to consider the
spectral ' function

'�z� � lim
n!1

Xn
k�0

�	z
k � Tr �jDj	z�; (10)

where D is an 1-dimensional matrix (�0 > 0). The rela-
tion between the dimension and '�z� has been discussed
in [9]. For large enough values of ( � Re�z�, Tr�jDj	z�
is well defined. One says that D has dimension spectrum
Sd if a discrete subset Sd � fs1; s2; . . .g 
 C exists, such
that '�z� can be holomorphically extended to C=Sd.

(
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This definition is consistent with the Weyl formula.
The set Sd has more than a single point when, for ex-
ample, the geometry is the union of pieces of different
dimensions [9]. In what follows we will look at an
upper bound for the dimension: It may happen that
Tr�jDj	(� � 0 for large enough (, whereas for small
values of (, Tr�jDj	(� � 1. Eventually, there is a value
of ( (say, (c) for which Tr�jDj	(c� is finite and nonzero.
The upper bound for the dimension will be � � (c.

In order to estimate h�i by means of (10), we re-
write (3) and (4) as integrals over the eigenvalues *k
of D. The procedure is well-known [7], and leads to
(Cn ��n�n	1�=2=

Q
n
k�1 k!)

zn��� �Cn

Z 1

	1
�dn*��2�*k�e

	�
P

n
i�1

*2
i �Cn�n;�; (11)

)

hO�*i�in;� �

Z 1

	1
�dn*�O�*i�

2n�n	1�=2�n2=2

�n=2
Q

n
k�1 k!

�2�*k�e
	�

P
n
i�1

*2
i �

Z 1

	1
�dn*�O�*i�P n;��*k�; (12)
where ��*k� �
Q

i<j�*j 	 *i� is the Vandermonde deter-
minant (Jastrow factor), and �dn*� �

Q
n
i�1 d*i.

In RMT, �n;��+� is interpreted as the positional parti-
tion function of an ensemble of equal charged particles
(with positions given by *i) in two dimensions, moving
along an infinite line, in thermodynamic equilibrium at
temperature + — the so-called ‘‘Dyson gas’’ [10]. Then,
P n;��*1; . . . ; *n� defined in (12) is the probability of
finding one particle at *1, one at *2, etc. The value of
�n;��+� is known from the Selberg’s integral.

In the region � � �c the partition function Z��� is
dominated by 1-dimensional matrices. Thus, one may try
to select the 1-dimensional matrices out of the whole
ensemble, and then compute the mean of the ' functions
following (10). However, from the standpoint of our sta-
tistical approach this procedure does not seem natural
since the sum over n is a key ingredient in the whole
construction. Hence, we look for a quantity related to the
' function that captures the statistical nature of our
model. Let us compute the mean value

hTr,jDj	(in;� �

*Xn
k�1

j*kj
	(-�j*kj 	 ,�

+
n;�

: (13)

Bearing in mind (10), we want to study hTr,jDj	(in;�
only in the region of eigenvalues where it is a decreasing
function of (. Hence, we introduced an ‘‘infrared’’ cutoff
,, since there is a nonzero probability to find a configu-
ration in the volume

P
j*kj � , around the origin. Using

the symmetry of the integrand in (13) under permutations
of the position indexes, we arrive at

hTr,jDj	(in;� �
����
�

p Z
out;,

d*nj*nj
	(.n�

����
�

p
*n�; (14)

where we have used the definition of the spectral density
.n�*� � h

P
��*	 *k�in. Besides,

R
out;, �

R
	,
	1 �

R
1
, .
The computation of (13) was reduced to a one-particle
problem. It is known that .n�*� �

P
k/

2
k�*�, /k�x� being

the Weber-Hermite functions [7]. In the large n limit,
.n�*� converges to a nonrandom function, Wigner’s
‘‘semi-circle law,’’

.n�
����
�

p
*� �

������
2n

p

�

���������������������
1	

�
2n

*2

r
; (15)

for j*j<Rn;� �
������������
2n=�

p
, and zero otherwise. The aver-

age eigenvalue density for Gaussian ensembles of
Hermitian matrices with different values of n differ
only by a change of scale, for large enough n (since
Rn;� �

���
n

p
). We propose the following quantity in order

to extract information on the ' function (10):

hTr,n;�
jDj	(i���� lim

N!1

XN
n�1

P�n;��hTr,n;�
jDj	(in;�: (16)

Hence, we are sampling the partial traces of the ensemble
of 1-dimensional Hermitian matrices by the total trace of
finite dimensional matrices in the complete Gaussian
ensemble of Hermitian matrices. Now, we study the
asymptotic properties of hTr,n;�

jDj	(in;� as a function
of ( and n for n� N large. In this case, one may use the
semicircle law in (14),

hTr,n;�
jDj	(in;� �

2

�

���������
2n�

p Z Rn;�

,n;�

d*nj*nj
	(.n�

����
�

p
*n�:

(17)

In (17) we are neglecting the contribution from the ‘‘tail’’
of .n�

����
�

p
*�, outside of the semicircle radius Rn;�. There

is an exponential decrease in the tail, so that the total
number of particles (or eigenvalues) in this region is of
order 2 [11]. This finite-size correction is not relevant to
081301-3
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our asymptotic analysis. Besides, the cutoff , is a func-
tion of n and �, ,n;� � 0

������������
2n=�

p
. The mean particle (or

level) spacing is s�*;�� � .	1
n �*;��, so that the mean

spacing is almost uniform near the origin. Near the end
points (edges) the spacing is highly nonuniform. This is
the asymptotic region we are interested in. Our proce-
dure is to select a slice of size �n;�;, � Rn;� 	 ,n;� �
�1	 0�Rn;� near the edge, so that the relative size of
the slice, �n;�;,=Rn;�, does not depend on n and �. This
choice ensures that we are treating matrices of different
sizes n on the same footing. From (17) and (14) we obtain,
after some manipulations,

hTr,n;�
jDj	(in;� �

2

�
�2n�1	�(=2��(=2

Z 1

0

dy
y(

��������������
1	 y2

q
:

(18)

The asymptotic behavior of hTr,n;�
jDj	(in;� does not

depend in an essential way on the particular choice of 0,
as long as we keep 0 � 0.

Now we use the asymptotic formula (18) in (16)
and search for the value (c for which, as N ! 1 and
� ! �c, hTr,n;�

jDj	(i diverges (converges to zero) if
(< (c (( > (c), with hTr,n;�

jDj	(ci finite and nonzero.
This gives an upper bound for the dimension of the
‘‘condensed’’ manifold in the infinite phase (� � �c),
which is h�i<(c. We obtain

hTr,n;�
jDj	(i��� � lim

N!1

XN
n�1

P�n; ��n1	�(=2�: (19)

In the finite phase (� > �c) the sum in (19) converges
for ( � 0. We conclude that (c � 0 (i.e., h�i � 0) for
� > �c , as expected. From the behavior of P�n;�� in
the infinite phase it follows that the convergence of the
sum in (19) is dictated by the behavior of �n;( � n1	�(=2�

in the limit n� N ! 1. For � � �c we get �n;( ! 1 if
(< 2, and �n;( ! 0 if ( > 2. For ( � 2 it turns out that
hTr,n;�

jDj	2i��� � 1. Therefore, we obtain the upper
bound h�i< 2.

Notice that we do not have a definition of the dimen-
sion as an operator [as suggested by (9)], from which it
will be possible to compute its average in the ensemble of
all Hermitian matrices, as we have do for n in (6).
Instead, our guide is the operational definition encapsu-
lated in (16). In order to go beyond the upper bound
computed above we need to find a suitable observable
which reduces to the classical dimension (as given by
the Weyl formula) in the limit n ! 1. This eventually
may lead to a numerical computation of h�i. Besides,
one sees that the reason for the upper bound h�i< 2 lies
in the semicircle law and its leading

����
*

p
behavior near the

edge. It is known from 2D models of discretized pure
quantum gravity [12,13] that some special matrix poly-
081301-4
nomial potentials V�D� �
P

akTrD
2k may lead, in a suit-

able scaling limit, to a behavior near the edges different
from the square root. Thus, a possible way to obtain a
bound of higher dimension would be to include higher
polynomial interactions, or modify the quadratic one in
(2) including more (internal) symmetries besides the
unitary one. These and other questions are under study,
and will be reported elsewhere.

To conclude, in this Letter we proposed a discrete
model for quantum gravity based on the spectral prin-
ciple. The model is connected with the GUE of Hermi-
tian matrices, and contains the mean number of points,
hni, and the dimension of the space-time, h�i, as dynami-
cal observables. We have shown that the model has two
phases: a finite phase with a finite value of hni and
h�i � 0, and an infinite phase with a diverging hni and a
finite h�i � 0. The critical point was computed, �c �
�=2, as well as the critical exponent of hni. Moreover,
an upper bound for the order parameter h�i was
found, h�i< 2.
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