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Atomic Bose and Anderson Glasses in Optical Lattices
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An ultracold atomic Bose gas in an optical lattice is shown to provide an ideal system for the
controlled analysis of disordered Bose lattice gases. This goal may be easily achieved under the current
experimental conditions by introducing a pseudorandom potential created by a second additional lattice
or, alternatively, by placing a speckle pattern on the main lattice. We show that, for a noncommensurable
filling factor, in the strong-interaction limit, a controlled growing of the disorder drives a dynamical
transition from superfluid to Bose-glass phase. Similarly, in the weak interaction limit, a dynamical
transition from superfluid to Anderson-glass phase may be observed. In both regimes, we show that
even very low-intensity disorder-inducing lasers cause large modifications of the superfluid fraction of
the system.
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tial can be dynamically generated by growing on an al- k, and the directions k1 / ��0:5; 1� and k2 / ��1; 0:5�.
At zero temperature, the bosonic lattice gases may
undergo a quantum phase transition [1] from a superfluid
(SF) to an insulator [2]. In the absence of disorder there
exist Mott insulator (MI) states, characterized by a fixed
(integer) number of bosons per lattice site, a gap in the
excitation spectrum, and vanishing superfluid fraction
and compressibility. In the presence of disorder, an addi-
tional insulating phase, so-called Bose-glass phase (BG),
may occur [2]. This phase presents no superfluid fraction,
a gapless excitation spectrum, and a finite compressibil-
ity. The SF-BG transition has been recently experimen-
tally studied in various physical systems [3], and attracts
a continuous theoretical interest [4–7]. In particular, the
possibility of a direct MI-SF transition in the presence of
disorder remains a controversial issue.

The nature of the disorder-induced insulator phases
depends on the interplay between hopping, nonlinear
interactions, and disorder. In the strong-interaction re-
gime, the cooperation of interactions and disorder leads
to the appearance of a BG phase. For weak interactions,
the disorder leads to an Anderson-type insulator, or
Anderson-glass (AG) [4]. In the latter case, contrary to
the BG phase, the interactions tend to delocalize and
therefore compete with the disorder.

The detailed analysis of these properties demands an
experimentally accessible system in which the disordered
Bose lattice gases could be studied in a controlled way.
One of the aims of this paper is to show that this goal can
be relatively easily accomplished by using cold Bose
gases in optical lattices, for which the development of
cooling and trapping techniques allows a large degree of
control. Recently, Greiner et al. [8], following the theo-
retical suggestion of Jaksch et al. [9], have observed the
SF to MI quantum phase transition in an optical (non-
disordered) lattice loaded with 87Rb atoms.

In the case of an optical lattice a pseudorandom poten-
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ready existing (main) optical lattice a second (additional)
one with a different wavelength [9–11]. Based on this
idea, we study in this Letter the dynamical generation of
the BG and AG phases in a many-body system under
realistic conditions. In addition, we discuss the alternative
generation of a truly random potential by superimposing a
speckle pattern. In the first part of this Letter, we consider
the regime of strong interactions where the filling factor is
noninteger, showing that the adiabatic turn-on of the
disorder may lead to a dynamical transition into the BG
phase. In the last part of the Letter, we analyze the weak
interaction regime, and, in particular, the possibility to
achieve a dynamical transition into the AG phase. For
both regimes of interactions, the SF fraction [12] is cal-
culated. We show that under realistic conditions even very
low-intensity disorder-inducing lasers lead to a dramatic
reduction of the SF fraction, indicating the appearance of
BG or AG phases.

We consider an ultracold Bose gas in a 2D optical
lattice. We analyze the case of 23Na, but our results also
apply to other species. We assume the atoms as tightly
confined in the transversal (z) direction by a harmonic
trap of frequency !z=2� � 6 kHz, so that the wave func-
tion in z remains the Gaussian ground state. No additional
harmonic confinement is assumed in the xy plane.

The optical lattice is formed by the main laser beams,
whereas additional lasers are responsible for the intro-
duction of (quenched) pseudodisorder. The optical poten-
tial thus has the following form:

V�r� � Vl�r� � Vr�r�; (1)

where r � �x; y�, the main lattice is Vl�r� �
V0�cos

2�kx� � cos2�ky��, and the secondary lattice is
Vr�r� � V1�cos2�k1r� � cos2�k2r��. The main (addi-
tional) beam’s intensity and/or detuning controls the
value of V0 (V1). In the following we assume k1 � k2 �
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The pseudorandomness of the potential is determined
by q � k1=k, i.e., the ratio between the wavelengths of
the main (� � 2�=k) and the additional lattices. For
commonly used Nd:YAG and Ti:sapphire lasers q �
1064=795 � 1:338. We note that a pseudorandom lattice
can also be achieved by splitting off part of the main laser
beams and creating the additional incommensurate lat-
tice by interfering these light beams at an angle.

We assume that the energies involved in the system are
much smaller than the energy separation between the first
and the second band of the lattice, and consequently we
can reduce our analysis to the first band. In that case, the
physics of the atomic lattice Bose gas is governed by the
Bose-Hubbard Hamiltonian [9]:

H � �
X
hi;ji

Jija
y
i aj �

U0

2

X
i

ni�ni � 1� �
X
i

Wini: (2)

Jij � J0 � �Jij are the tunneling (hopping) coefficients
between nearest neighbors. They differ slightly from J0
[9] by a correction of the form �Jij � �

R
d3rw?�r�

ri�Vr�r�w�r� rj�, where w�r� rj� are the Wannier func-
tions for the lowest energy band. Clearly, the contribu-
tions of the additional beams to the tunneling, vanish on
‘‘average,’’ h�Jiji � 0. In the following we consider V0 �
25ER and V1 ’ 0:05ER, where ER is the photon recoil
energy. In this case we have checked numerically that
j�Jij=J0j< 0:1%, hence the major contribution to Jij
comes from J0, and the model reduces to the ordinary
Bose-Hubbard model with constant tunneling [4–7]. In
the Hamiltonian (2), U0 / a is the coupling constant [9]
for the interparticle interactions (a is the scattering
length), and

Wi �
Z
d3rw?�r� ri�Vr�r�w�r� ri� (3)

are the pseudorandom on-site energies, which, may in-
troduce significant effects even for very small V1=V0.

The disorder-induced phases are characterized by a
vanishing SF fraction, which is determined studying the
system sensitivity to changes of boundary conditions. To
this aim, we employ the boost method [12], resulting in
substitution in (2): Jij ! Jijei’ij . The angles ’ij are de-
fined as follows: if i � �xi; yi� and j � �xj; yj�, then for
yi � yj, ’ij � sgn�xi � xj�’=M, and otherwise ’ij � 0,
where M is the lattice size in the x direction. Physically,
this choice of ’ij corresponds to a constant current per
lattice, proportional to ’, in the positive x direction. The
SF fraction is then obtained from the corresponding
ground state energy E�’� as

!s �
M2

N
E�’� � E�0�

J0’2 ; (4)

where N is the number (mean) of atoms. A similar ex-
pression can be easily derived for a 1D case. In the
following, we denote by � the ratio of N to the number
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of lattice sites. The ground state is obtained from the
minimization of h�jH �$Nj�i, where $ is the chemi-
cal potential. We employ the Gutzwiller ansatz j�i �Q
i

P
1
n f

�i�
n jnii, where f�i�n are the amplitudes of having n

atoms at an ith lattice site. We have observed that it is
numerically easier to calculate the ground state using
static methods for a nondisordered and nontwisted case
(V1 � 0; ’ � 0), and then adiabatically evolve such a
state, first to ’ � 0, and then for a constant ’ to V1 �

0 (first evolving V1 and then ’ should give the same
result). The evolution is performed by means of the dy-
namical Gutzwiller approach [13], in which we solve the
equations

i _ff�i�n �

�
U0

2
n�n� 1� � nWi

�
f�i�n ��?i

������������
n� 1

p
f�i�n�1

��i
���
n

p
f�i�n�1; (5)

where �i � �
P

hi;jiJije
i’ijh�jajj�i.

Another useful quantity characterizing the state of a
Bose lattice gas is the condensate fraction, defined as the
highest eigenvalue of the one particle density matrix,
!ij � h�jayi ajj�i, divided by the number of particles
[14]. This quantity is important for experiments, since it
determines the phase coherence, and thus the contrast in
interference measurements [8].

In order to study the dynamical transition into the BG
phase, it is convenient to prepare the system in the SF
phase in the presence of dominating interactions and
weak tunneling, when � is noninteger. Therefore, we
consider an initial system deeply in the SF regime, with
almost 100% of SF fraction and � � 0:75. Then, the
intensity of the main laser is adiabatically increased in
20 ms, obtaining a very large U0=J0 � 70. Both the
condensate and the SF fraction decrease during this pro-
cess down to approximately 30%, being nonzero only due
to noninteger value of � (see inset of Fig. 1). As a next
step, the disorder is turned on adiabatically in about 0.5 s,
by switching on the additional laser beams. The conden-
sate and also the SF fraction decrease dynamically during
this process (Fig. 1). Ultimately, the condensate fraction
does not tend to 0, but to a very small value of about 2%,
due to the finite size of the systems and the approximate
character of the Gutzwiller approach [15,16]. In contrast,
the SF fraction tends to zero faster. Note that the super-
fluidity is rapidly lost, although at any time the additional
lattice is very much weaker than the main one. This fact
could at first glance seem surprising, but it is due to the
small values of J0 and U0 (10�3ER and 7� 10�2ER,
respectively). Thus even for V1 being of the order of a
few percent of ER (V1=V0 � 1), the value of jWij=U0 � 1.
Together with the low value of J0=U0, this explains why
the system enters the BG phase for such a weak additional
lattice.

We stress at this point that our calculations do not
include an additional inhomogeneous trapping in the xy
080403-2
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FIG. 2. Condensate fraction during the dynamical SF to BG
transition induced by a superimposed speckle pattern, for 23Na
atoms placed on the main 40� 40 lattice with � � 1064 nm,
� � 1:5, V0=ER � 25, and V2=ER � 0:048t=T, with T �
0:42 s. The solid (dashed) line refers to speckles of average
size � � 0:34� (� � 1:37�). For comparison, the dotted line
shows the same transition in the quasidisordered case (parame-
ters as in Fig. 1, but � � 1:5). We expect that, similarly as in
Fig. 1, the decrease of the SF fraction is faster than that of the
condensate fraction.
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FIG. 1. Condensate fraction (solid line) during the dynamical
SF to BG transition induced by a superimposed additional
optical lattice, for 27Na atoms placed on the main 40� 40
lattice with � � 1064 nm, q � 1:338, � � 0:75, V0=ER � 25,
and V1�t�=ER � 0:059t=T, where T � 0:42 s is the total time of
evolution. The inset shows the first preparation step (see text),
for which V0�t� � VSF � �VMI � VSF�t=T [V1�t� � 0], where
VSF=ER � 7, VMI=ER � 25, and T � 0:02 s. The dashed line
presents the SF fraction.
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plane, which, for the low J0 we consider, may result in the
formation of MI domains [17] if the filling factor at the
trap center is larger than 1. For sufficiently shallow traps,
the central BG region should dominate the physics for a
finite disorder. For filling factors lower than 1, the sys-
tems is expected to be fully in the BG phase.

It is interesting to compare results obtained with the
quasidisordered perturbation induced by the additional
lattice, and those achieved using a purely random optical
potential coming from a speckle pattern. We generated
speckle pattern in a way described in [18] and checked
that it gives correctly both the autocorrelation function
and the probability distribution. The speckle pattern in-
duces a potential Vs� ~rr�, which is characterized by its
mean value V2 � hVs� ~rr�i, and by the average speckle
size �. As above, the disorder-induced corrections to
the tunneling are minor, and the most significant contri-
bution of the speckle potential appears in the form of Wi
coefficients (3), defined in this case by means of the Vs�~rr�
potential. Not surprisingly, values of V2 comparable to
those previously considered for V1 lead to a transition
from the SF to Bose-glass phase.We have investigated this
issue for � � 0:34; 1:37; 2:75�. The obtained results are
similar to those resulting from quasirandom perturbation
generated by additional beams (see Fig. 2).

In the final part of this Letter, we discuss the non-
interacting regime, where the adiabatic turn-on of the
disorder can lead to a dynamic transition into the AG
phase. The weakly interacting regime, and even the non-
interacting one, could be achieved by reducing the s-wave
scattering length by means of Feshbach resonances [19].
For simplicity we consider a 1D optical lattice case where
the perturbation is either generated by two noncommen-
surate standing waves, Vr�x� � V1�cos2�k1x� � cos2�k2x��
with k1 � k2, or by a laser speckle potential Vs�x� char-
acterized by a mean value V2. The Hamiltonian (2) re-
duces then to the form
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H � �
X
hi;ji

Jija
y
i aj �

X
i

Wini; (6)

which becomes the famous Anderson’s hopping model
[20], if the Wi coefficients are randomly distributed.
Similarly, as above Jij are almost unchanged by the
presence of disorder. The single-particle character of the
noninteracting problem greatly simplifies the calculations
and allows for an exact treatment. In the absence of
interactions, 100% of atoms condense at zero tempera-
ture, each in a single-particle state j�i �

P
ncna

y
n jvaci.

We have analyzed the dynamical evolution of the ampli-
tudes cn during the turn-on of the disorder as well as their
ground state distributions; see Fig. 3.

Because of the finite size of the system, which implies
discreteness of the excitation spectrum, the application of
the boost method in the absence of disorder results in the
100% SF fraction. When the typical energy of disorder
becomes comparable to the energy separation between the
energy levels in the absence of disorder, the SF fraction is
expected to vanish (see Fig. 3). We clearly observe a
transition from a delocalized SF state to an Anderson-
localized one, where the occupation probabilities of
neighboring sites decrease exponentially with the dis-
tance from the localization centers [20]. From the upper
plot in Fig. 3 we conclude that in order to drive the system
into the AG phase smaller intensities are needed for the
speckle pattern than for the superimposed incommensu-
rable lattice, since as expected the speckle pattern results
in a ‘‘more disordered’’ distribution of theWi coefficients
(see middle plot in Fig. 3). It is especially worth noting
that in the case of a superimposed incommensurable
lattice the periodicity of the lattice reflects itself
in periodically Anderson-localized domains, but the
localization phenomena is still present, as shown in
Fig. 3. We observed the same quantitative phenomena
080403-3
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FIG. 3. Transition from the SF to AG phase for 23Na atoms
placed on a 1D main lattice of 86 sites, with � � 1064 nm and
V0=ER � 16. Upper plot: superfluid fraction versus amplitude
of the disordered potential. The thick curve indicates the
speckle-induced transition (� � 1:34�), whereas the normal
line refers to the transition generated by a superimposed lattice
with k1=k � 1:338, k2=k � 1:396 (see text). Middle plot: de-
pendence of Vr�x� (normal line) and Vs�x� (thick line) for
V1=ER � 0:004 and V2=ER � 0:001. Lower plot: occupation
numbers of the ground state of the Hamiltonian (6) in the
presence of speckles (solid circles) and additional beams (open
circles), for V1=ER � 0:004 and V2=ER � 0:001.
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also for ratios k1=k and k2=k different from the ones listed
in the caption of Fig. 3. We have performed also time-
dependent simulations based on Eq. (6) to determine the
time scale for the adiabatic transition into the AG phase.
For a main lattice wavelength � � 1064 nm the adiabatic
evolution lasts a few seconds. This may be shortened
using higher frequency lattice beams since evolution
time scales as �2.

The experimental observation of the SF to BG (or to
AG) transition should be relatively easy to accomplish in
a setup such as that of Ref. [8]. The BG and AG phases can
be detected by observing the interference pattern after
removing the lattice for different intensities of the super-
imposed laser beams. The insulator character of the BG
and AG phases will be revealed by the disappearance of
the interference fringes. The phases can be additionally
characterized by measuring their gapless excitation spec-
trum, in an experiment similar to that of Ref. [8].

In summary, we have proposed an experimentally fea-
sible method of creating a system whose physics is gov-
erned by the disordered Bose-Hubbard model. We have
shown how the onset of small perturbation of the lattice
potential may result in a dynamical transition from a
superfluid regime into Bose-glass or Anderson-localized
phases. This transition occurs within experimentally fea-
sible time scales and can be easily controlled, allowing
for a detailed analysis of disorder-induced transitions.
Our proposal stimulates in this sense new interesting
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experimental possibilities including studies of Anderson
localization in 2D systems and the investigation of the SF
to MI transition in the presence of disorder.
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