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Motivated by recent measurements of electron paramagnetic resonance spectra in modulation-doped
CdMnTe quantum wells [F. J. Teran et al., Phys. Rev. Lett. 91, 077201 (2003)], we develop a theory of
collective spin excitations in quasi-two-dimensional diluted magnetic semiconductors. Our theory
explains the anomalously large Knight shift found in these experiments as a consequence of collective
coupling between Mn-ion local moments and itinerant-electron spins. We use this theory to discuss the
physics of ferromagnetism in (II,Mn)VI quantum wells and to speculate on the temperature at which it
is likely to be observed in n-type modulation-doped systems.
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It follows from our theory that the gap discovered ex- (2)
Substitution of transition metal elements in a semi-
conductor lattice often adds local moments [1] to the
system’s low-energy degrees of freedom and can lead to
qualitatively new physics. Important progress [2] has
recently been achieved in understanding the materials
science and physics of (II,Mn)VI and (III,Mn)V ternary
compound semiconductors in which Mn has been substi-
tuted on a relatively small fraction of the cation sites.
When these systems are doped p-type, the Mn ions spon-
taneously align at low temperatures in both bulk and
quantum-well systems with typical ferromagnetic tran-
sition temperatures �1 K in the quantum-well case and
�100 K in the bulk. Although there is broad agreement
that ferromagnetism in these systems is due to carrier-
mediated interactions between Mn local moments, con-
sensus [3] on the details of this picture is still building as
the body of experimental studies on well characterized
samples grows. In this connection it is intriguing that
ferromagnetism has never been observed when these
semiconductors are n-doped [4]. Recent inelastic Raman
and resistively detected electron paramagnetic resonance
(EPR) studies of n-doped (Cd,Mn)Te quantum wells by
Teran et al. [5] provide important information about the
role played by quantum-well electrons in correlating
Mn-ion local-moment-spin orientations. In particular,
these authors have discovered an avoided crossing be-
tween well-defined electron spin and Mn-ion spin-
resonance modes, an effect which demonstrates that the
two subsystems can couple collectively.

Quantum-well diluted magnetic semiconductor (DMS)
systems are unusual in that they consist of a quasi-3D
Mn-ion system coupled to quantum-well electrons that
have only two-dimensional (2D) translational degrees of
freedom. In this Letter, we present a theoretical analysis
which completely accounts for the observations of Teran
et al., including the size of the avoided crossing gap they
see. The theory sheds light on the physics that controls
ferromagnetism in DMS quantum wells and on the essen-
tial differences between electron- and hole-doped cases.
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perimentally occurs because quantum-well electrons and
Mn-ion spins are coupled ferromagnetically in n-doped
systems. According to our theory the ferromagnetic tran-
sition temperature is controlled by spin-orbit coupling
strength, a quantity that can be adjusted in situ by biasing
the quantum well [6] and is much larger in p-doped
systems. We conclude that ferromagnetism will occur in
n-doped quantum wells, but only at temperatures well
below those predicted by mean-field theory and below
those which have been studied experimentally. In the
following, we first describe our theory of collective
excitations of the coupled local-moment and quantum-
well-electron spin subsystems and then discuss ferromag-
netism in n-doped (Cd,Mn)Te systems.

We consider an n-type quantum well with width d (in
the ẑz direction) and one occupied subband. The quantum-
well geometry makes it convenient to split the three-
dimensional spatial coordinates into �r; z�, where r is the
x-y-plane projection. When subband mixing is neglected
[7] the electron wave function separates, ��r; z� �
 �r�	�z�, where 	�z� can be chosen to be real. We take
advantage of the large ratio between the Mn density and
the electron density in the samples studied by Teran et al.
and in typical [8] modulation-doped (II,Mn)VI quantum-
well systems, replacing the random distribution of Mn
local moments by a continuum density NMn�z�. We are
interested in the collective excitations in the presence of
an external magnetic field B � �0; 0; B�. The Hamil-
tonian H � Hkin �HZeeman �Hsd is the sum of three
terms. The kinetic energy of the electrons is described by

Hkin �
Z
d2r

Z d

0
dz	2�z�

�
X
�

 ̂ y
��r�

�
��i �hr� eA=c�2

2m	
��

�
 ̂ ��r�; (1)

where A is the vector potential. The Zeeman term reads

HZeeman � �BB 

Z
d2r

Z d

0
dz�geŝs�r; z� � gMnS�r; z��;
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where �B > 0 is the electron Bohr magneton. Here

ŝs�r; z� �
1

2
	2�z�

X
��0

 ̂ y
��r����0 ̂ �0 �r� (3)

is the electron spin density, ���0 is the vector of Pauli
matrices, and S�r; z� is the spin density of the Mn system.
The ferromagnetic (Jsd < 0) coupling between the elec-
tron and local-moment [2] spins is described by

Hsd � Jsd
Z
d2r

Z d

0
dzS�r; z� 
 ŝs�r; z�: (4)

As in our earlier work [9] on bulk DMS ferromagnets,
we develop our theory of elementary spin excitations in a
language where the conduction-band degrees of freedom
are integrated out. The local moments with spin S � 5=2
are represented by Holstein-Primakoff (HP) bosons with
retarded conduction-band mediated interactions. Because
gMn > 0, the external magnetic field tends to align the Mn
spins along the negative ẑz direction. For small fluctua-
tions around this state we can approximate the spin fields
in a coherent-state functional-integral representation of
the HP-boson partition function by S� � �ww

��������������������
2NMn�z�S

p
,

S� � w
��������������������
2NMn�z�S

p
, and Sz � �NMn�z�S� �www, where

the complex variables �ww;w label boson coherent states.
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The partition function is formally expressed as Z �R
D� �www� exp��Seff� �www�� with the effective action

Seff� �www� �
Z �

0
d�

Z
d2r

Z d

0
dz� �ww@�w� gMn�BBS

z�

� lndetG�1� �www�: (5)

The electron Green’s function in this equation may be
partitioned into mean-field and fluctuating terms,
G�1� �www� � �GMF��1 � "G�1� �www�, where

�GMF��1 �

�
@� �

�h2 ~rr2

2m	
��

�
�
�� ge�BB

2
�z; (6)

with ~rr � r� �ie= �hc�A, and the fluctuating part is

"G�1� �www� ��
jJsdj
2

Z d
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dz	2�z��

��������������������
2NMn�z�S

p
� �ww���w���

� �www�z�: (7)

The exchange contribution to the conduction-band spin
splitting that appears in GMF is given by � � jJsdj �NNMnS,
where �NNMn �

R
d
0 dz	

2�z�NMn�z�. Expanding to second
order in the boson fields and Fourier transforming, we
can write the quadratic part of the spin-wave action as
Seff� �www� �
1

�

X
m

Z d2k

�2$�2

Z d

0
dz

Z d

0
dz0 �ww�k; z; %m�D�1�k; z0; z; %m�w�k; z0; %m�; (8)

where %m are the bosonic Matsubara frequencies. The kernel D�1�k; z0; z; %m� in Eq. (8) is obtained from a straightfor-
ward calculation which leads to a fermion loop diagram specified by an unwieldy expression that we do not reproduce
here. Instead, we specialize to the case of k � 0 probed by the EPR and Raman experiments of Teran et al. In this limit
the kernel is given by the physically transparent expression:

D�1�k � 0; z0; z; %m� �
�
�i%m � gMn�BB�

jJsdj
2
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�
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������������������������������
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2

n# � n"
i%m ��� ge�BB

; (9)
where n� is the (2D) mean-field conduction-electron spin
density for spin�. At k � 0 this expression is valid at any
Landau level filling factor. The first term on the right-
hand side of Eq. (9) represents the energy cost of flipping
an individual Mn spin and includes the Knight shift K
contribution (see below) due to exchange coupling with
band electrons whose spin density depends on the posi-
tion of a Mn-ion within the quantum well. The second
term is the correction to the energy cost (at k � 0) which
occurs because the quantum-well electron system re-
sponds to Mn-spin reorientations. Collective excitations
are determined by locating zeroes of the kernel determi-
nant. Since uniform spin orientation fluctuations corre-
spond in our continuum theory to w0�z� /

���������������
NMn�z�

p
, the

energies E � �h� of the collective excitations we seek
[10] are obtained by solving

Z d

0
dz

Z d

0
dz0w0�z�D�1�0; z0; z; i%m���w0�z0� � 0; (10)
which implies collective excitations at

E �
EMn � Ee

2
�

����������������������������������������
�EMn � Ee�2

4
� K�

s
: (11)

The quantities in Eq. (11) all have simple physical inter-
pretations. The expressions EMn and Ee denote mean-field
transition energies in which the magnetic quantum num-
ber is increased by one for Mn and electron spins, respec-
tively. Each mean-field excitation energy has two
contributions, the Zeeman energy and the exchange en-
ergy due to coupling between the two spin subsystems.
For the Mn spin, EMn � EZMn � K, where the Zeeman
term is EZMn � gMn�BB and the Knight shift is

K �
jJsdj�n# � n"�

2

�NNMn

NMnd
: (12)

K=�gMn�B� is the mean exchange field experienced by the
local moments because of the electron spin polarization.
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It is analogous to the Knight shift experienced by nuclei
in a spin-polarized electron gas in NMR experiments.
The average Mn density in this expression, NMn, defined
by NMnd �

R
d
0 dzNMn�z�, is not equal to the quantity �NNMn

which appeared previously in the mean-field quantum-
well electron spin gap; the effective 3D electron density
that appears in Eq. (12) involves the quantum-well width
and the Mn distribution within the quantum well in a
nonobvious way that follows from our detailed analysis.

For the quantum-well electrons, Ee�EZe ��, the Zee-
man term is EZe � ge�BB. Following the NMR analogy,
the mean-field electron spin splitting � � jJsdj �NNMnS cor-
responds to the nuclear-polarization induced Overhauser
shift in electron spin-resonance frequencies. Because
gMn > 0, and therefore EZMn > 0, the mean-field Mn-
spin configuration points in the negative ẑz direction. For
the conduction-band electrons, there is a competition
between the Overhauser energy � > 0 and the Zeeman
term EZe < 0 (ge < 0). The Overhauser shift dominates
except at very strong magnetic fields, i.e., the mean-field
electron spin polarization is along the negative z axis.

Equation (11) is able to account quantitatively for the
experiments of Teran et al. In their sample the avoided
crossing is seen in a strong magnetic field near Landau
level filling factor % � 3, where the electronic state has
two occupied majority-spin Landau levels and one mi-
nority spin, i.e., n# � n" � n=3 � 2� 1011 cm�2. For a
Mn fraction that is constant across the quantum well we
obtain NMn � �NNMn � 4:4� 1019 cm�3 for the studied
sample [5]. The width of the quantum well is d �
10 nm. At low temperatures, the Mn spins are fully
polarized by the external magnetic field. Using the ex-
perimental [5] low-temperature value for � � 1:65 meV,
we conclude that jJsdj in (Cd,Mn)Te is 0:015 eV nm3, in
agreement with Ref. [11]. Using these values we conclude
that K � 1:5 �eV and hence the avoided crossing gap��������
K�

p
� 0:05 meV, in close agreement with the experi-

mental estimate � 0:03 meV. In the quantum Hall re-
gime, the gap’s temperature dependence may be
attributed to the temperature-dependent Mn spin polar-
ization and the consequent temperature dependence of �
(see Fig. 1). At these strong fields the Mn spins polariza-
tion is described by the Brillouin function so that ��T�=
��0� � B5=2�5gMn�BB=2kB�T � TAF�� where the phe-
nomenological parameter TAF � 0:18 K accounts for the
direct antiferromagnetic Mn-Mn coupling [5].

The close agreement between experimentally observed
and calculated anticrossing gaps supports our effective
model for DMSs in which the low-energy degrees of
freedom are local S � 5=2 Mn spins that are exchange
coupled to band-electron spins. The avoided crossing
establishes that both Mn and band spins behave collec-
tively and that they are coupled, conditions under which
ferromagnetism is expected. The ferromagnetic transition
temperature of this quantum-well system can be esti-
mated by applying the mean-field approach that appears
to be generally successful when applied [12] to bulk
077202-3
(III,Mn)V materials. Assuming uniform Mn-doping and
particle-in-a-box subband wave functions, the mean-
field critical temperature for quantum wells [13] can be
written as

kBTMF
c �

S� 1

4

Kmax�

*F
; (13)

where Kmax � njJsdj=�2d� is the value of the Knight shift
when the quantum-well electrons are completely spin
polarized and *F is the paramagnetic 2D electron gas
Fermi energy. Using experimental values for � �
1:65 meV, Kmax � 4:5 �eV, and the effective mass m	 �
0:107me we find that TMF

c � 5:6 mK.
In three-dimensional DMS ferromagnets, we expect

[14] mean-field theory to be reliable when the carrier
density is smaller than the Mn density and �< *F.
These conditions are both satisfied here. In the quasi-
2D case, however, long-wavelength collective excita-
tions have a significant negative impact on tendencies
toward long-range magnetic order. In fact, for the model
studied here which has no spin-orbit interactions, con-
tinuous spin-rotational invariance implies that long-
range magnetic order is impossible at finite temperatures
in 2D [15]. Thermal and quantum fluctuations at low
temperatures in these quasi-2D ferromagnets are even
more important than usual because 2D electron gas
properties lead to vanishing spin stiffness [10,16].
Long-range magnetic order is possible in (II,Mn)VI
quantum wells only because spin-orbit coupling favors
magnetization orientations perpendicular to the quan-
tum wells.

In symmetric quantum wells spin-orbit interactions
are described by the Dresselhaus Hamiltonian, HD �
+���xkx � �yky�hk

2
zi. Evaluating the magnetization-

orientation dependence of the energy correction due to
this term by second-order perturbation theory we find
that the easy axis is perpendicular to the quantum well.
The collective-excitation energy gap is twice the anisot-
ropy energy per Mn spin. We find that
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Eso �
+2hk2zi

2k2Fn
SNMndmaxf�; 2*Fg

; (14)

taking hk2zi � �$=d�2 for the lowest quantum-well sub-
band, and k2F � 2m	*F= �h

2. When Eso is small the Curie
temperature will be limited by collective fluctuations
[14]. Taking account of the expected dispersionless 2D
spin-wave bands and estimating the Curie temperature as
the temperature at which S magnons per Mn spin are
thermally excited, we predict that kBTcoll

c ��S�1=2�Eso.
Plugging in +�12meVnm3 for the Dresselhaus coeffi-
cient in the CdTe conduction band [17], this implies that
Tcoll
c � 0:4 mK in the sample studied by Teran et al.,

considerably smaller than the mean-field estimate. It is
interesting to note that with increasing Mn-doping con-
centration NMn the mean-field Curie temperature in-
creases [Eq. (13)] while collective-fluctuation energy
decreases [Eq. (14)]. For asymmetric quantum wells the
spin-orbit interactions are dominated by Rashba cou-
pling, and, depending on the degree of asymmetry, the
collective-excitation energy gap will become larger until,
eventually, the system can again reach the mean-field
regime. Stronger spin-orbit interactions in the valence
band [18] may explain the apparent success of mean-field
theory in predicting ferromagnetic transition tempera-
tures there. The strong antiferromagnetic interactions
that occur between neighboring Mn ions will reduce
[2,18] the number of Mn spins that can be spontaneously
aligned by the relatively weak but longer ranged carrier-
mediated interactions, but should not preclude ferromag-
netism when the Mn mole fraction is low.

In conclusion, we presented a theory of collective spin
excitations in DMS quantum wells which explains the
anomalously large Knight shift observed in recent ex-
periments. We use our theory to discuss the physics of
ferromagnetism in n-type DMS quantum-well systems,
which has not yet been observed. We point out that spin-
orbit interactions are necessary to support ferromagne-
tism, predict ferromagnetic transition temperatures in
symmetric quantum wells that can be well below those
implied by mean-field theory, and suggest that a crossover
between collective-fluctuation-limited and mean-field-
interaction-limited ferromagnetism can be observed in
these systems by using a bias voltage to adjust the spin-
orbit interaction strength.
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