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We present a theory for quasiparticle heat transport through superconducting weak links. The
thermal conductance depends on the phase difference (¢) of the superconducting leads. Branch-
conversion processes, low-energy Andreev bound states near the contact, and the suppression of the
local density of states near the gap edge are related to phase-sensitive transport processes. Theoretical
results for the influence of junction transparency, temperature, and disorder, on the conductance, are
reported. For high-transmission weak links, D — 1, the formation of an Andreev bound state leads to
suppression of the density of states for the continuum excitations, and thus, to a reduction in the
conductance for ¢ = 7. For low-transmission (D < 1) barriers resonant scattering leads to an increase
in the thermal conductance as T drops below T, (for phase differences near ¢ = ).
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The Josephson effect in superconducting weak links is
perhaps the best known example of macroscopic phase
coherence. In addition to the superconducting tunneling
current, j, = j.sin¢, Josephson [1] showed that the elec-
trical current through a tunnel junction includes Ohmic
terms, j; = (0 + o cosd)V, where ¢ is the phase dif-
ference between the two superconductors, and V is the
voltage across the junction. These terms describe dissipa-
tive quasiparticle tunneling when the junction is biased
by a voltage. The term, 0|V cos¢, is attributed to “inter-
ference” between Cooper-pair and quasiparticle tunnel-
ing [1-3], and averages to zero in voltage-biased
junctions.

Phase-modulated dissipative currents are character-
istic of any type of superconducting weak link. For ex-
ample, the thermal current through a temperature-biased
superconductor-insulator-superconductor (SIS) junction
is predicted to be a periodic function of ¢ [4]. For a
stationary phase difference the thermal conductance is
also stationary. Thus, in contrast to voltage-biased junc-
tions, the phase-modulated thermal conductance does not
average to zero. However, less is known about phase-
sensitive thermal transport across superconducting weak
links compared with their current-voltage characteristics.
Recent investigations of heat transport through SIS junc-
tions are based on the tunnel Hamiltonian method [5],
while Kulik and Omel’yanchuk [6] calculated the thermal
current for the opposite extreme of a perfectly transmit-
ting superconducting constriction (a “pinhole”). In terms
of the transmission coefficient of the interface potential
barrier between two superconductors, the SIS junction
corresponds to D < 1, while the pinhole corresponds to
perfect transmission, D — 1.

In the following we present a theory for quasiparticle
heat transport through superconducting point contacts for
any junction transparency, and as a function of tempera-
ture and disorder. The thermal conductance is sensitive to
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spatial inhomogeneities of the order parameter, particu-
larly changes in phase, which lead to branch conversion
between particlelike and holelike excitations [7], and to
the formation of low-energy bound states in the vicinity
of the point contact. The bound state spectrum and trans-
mission probabilities for continuum excitations are
strongly modified by the junction transparency, which
leads to large changes in the thermal conductance of the
junction.

To study quasiparticle transport through temperature-
biased superconducting weak links, we use the method of
nonequilibrium quasiclassical Green functions [8]. In this
formahsm the advanced and retarded Green functions,
GF , describe the local spectrum of CXCItatIOIlS for the
system while the Keldysh Green functions, GX , carry
the information about the nonequlllbrlum population of
these states. Each propagator, G X (p n€R 1) is a
2 X 2 matrix in particle-hole (Nambu) space obeying
transportlike equations for excitations of energy € mov-
ing along classical trajectories labeled by the Fermi mo-
mentum, p,. We use the notation of Ref. [8], set h=1,
kg = 1, and consider spin-independent transport in spin-
singlet superconductors.

The basic model for superconducting weak links con-
sidered here is that of a constriction of diameter and
length on the nanometer scale, much smaller than the
coherence length, £y, = v f/ A, and the bulk elastic and
inelastic mean-free paths (see Fig. 1). The potential bar-
rier located at z = 0 is characterized by a transmission (or
reflection) probability, D(p;) [or R(p;) = 1 — D(py)], for
normal-state quasiparticles with Fermi momentum p
incident on the interface. The coupling between the two
superconductors, S; and S,, can then be described by a
boundary condition connecting the Green functions for
the two superconductors at the junction interface [9]. The
order parameter at the junction interface for the super-
conductor §; is A ¢'?i, and the temperature at the junction
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FIG. 1 (color online). Temperature-biased ScS weak link
geometry. Quasiparticle trajectories are coupled by reflection
and transmission at z = 0. The shaded boundaries define the
region ( ~ &, >> a) where superconductivity and the excitation
spectrum are strongly modified for ¢; # ¢,.

interface for superconductor §; is 7; for j = 1,2. The
phase difference is denoted by ¢ = ¢, — ¢, and the
temperature bias is 67 = T, — T}.

Recently, Eschrig [8] recast Zaitsev’s boundary con-
dition into a convenient form by parametrizing the qua-
siclassical Green functions and transport equations using
Shelankov’s projection operators [10] and generalized
spectral, y®4, and distribution, xX, functions obeying
Riccatti-type transport equations. We use the Riccatti
formulation of the quasiclassical equations with the
boundary condition of Ref. [8] to solve for the Keldysh
Green’s functions and heat current for superconducting
weak links driven out of equilibrium by a temperature

bias. The propagators for trajectories incident, @Ii’A’K =
@f’A’K(pf -2>0,z=07), and reflected, GRAK —

@If‘A‘K(pf -2<0,z=07), by the interface from the S,
side can be used to determine the heat current through the
interface,

d A A
o= AN [ 5 e (M6 @y ) - 6oy ). (1)

where N is the normal-state density of states at Fermi-
surface, v is the Fermi velocity and A = ma? is the
cross-sectional area of the constriction. The Fermi-
surface average includes the direction cosine for projec-
tion of the group velocity along the direction normal to
the interface; i.e. (- -+) = ; /2 46 siné cosf(: - +), where
6 = arccos(V; - ). We con51der the case in which S; and
S, are identical s-wave superconductors with isotropic
Fermi surfaces; it is straightforward to generalize the
results to two different s-wave superconductors. We also
consider small junctions, a << £&,; in this limit the
Josephson supercurrent through the contact is small by
at least a factor a/&, compared to the bulk critical
current, so pair-breaking corrections to the order parame-
ter by the supercurrent can be neglected [11]. Thus, to a
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good approximation the order parameters take their bulk
equilibrium values, but with local values for the phase.
Also for small constrictions the thermal resistance of the
junction is much larger than in that in the bulk, so the
temperature drop occurs essentlally at the junction.

With these considerations, (55+ can be calculated as
follows. First, we express the Green function in terms of
Riccati amplitudes [8]. For example,

{{(F‘IA - )gf'yf )
XK 4+ XKTFr) )

G = 227 (o = Xy
" NN\ AT Xt

where NRN# = (1 + yRTF)(1 + #4T4). The advanced
amphtudes are obtained from retarded functions using
the symmetry y* = —(R)*. In the point contact geome-
try, the amplitudes and distribution functions for incom-
ing quantities (lower case) take their local equilibrium
values: YK = yR(—e)" = —iA /%1 /[eR + iyA? — (F)],
1K =iK(—e)* = (1 — [yF») tanh(e/2T)), for j=1,2.
Using the boundary conditions of Ref. [8], we construct
the corresponding functions for outgoing trajectories
(upper case),

_ R+ %,y)% + DL + ¥1¥2) %2

I,
1+ Ry,y, + Dy,7,

N C)

V2175,

s
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where we omitted the superscripts. Inserting these ex-
pressions into Eq (2), and performing the analogous

calculation for &, we obtain explicit expressions for
the phase-sensitive thermal conductance, defined by I,
—k(¢p, T)ST, in the limit 8T — 0. The general result can
also be used to calculate the heat current beyond the
linear response limit. A more detailed derivation and
discussion will be presented elsewhere [12].

In the clean limit, e® — € + i0", the thermal conduc-
tance is expressed in terms of the transmission of bulk

excitations of energy € = A and group velocity, v,(€) =
vsVe? — A?/e through the junction,

k(¢ T) = A [A‘” deN (O ev, ()], ¢>(§—§), 4

where f(€) = (e/T +1)~' is the Fermi function,

N(e) = Nre/Ve* — A? is the bulk density of states
(DOS), and D(e, ) = Deel(€, d) + Dey(€, d) is the
transmission coefficient for the heat current, which is
the sum of

(e2 — A?)(€? — A?%cos? %)

D, ¢)=D [€2 — A%(1 — Dsin? %)]2 ,

&)

the transmission coefficient for electronlike (holelike)
quasiparticles remaining electronlike (holelike), and
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D (e, ¢) = D(1 — D) [€2 — A2(1 — Dsinzg)]z’

(6)

the transmission coefficient for electronlike (holelike)
quasiparticles with branch conversion to holelike (elec-
tronlike) quasiparticles. Here we neglect the angular
dependence of the barrier transmission and reflection
probabilities [13].

The heat current density carried by bulk quasiparticles
of energy € in the superconducting leads reduces to the
normal-state current density, N (e)[ev,(e)] = Nyevy;
the increase in bulk DOS is compensated by the reduc-
tion in the group velocity. For ¢ = 0, D(e, ¢), reduces
to the barrier transmission probability for normal-state
quasiparticles, ©(g, 0) = D. Thus, for ¢ = 0 the ther-
mal conductance of the ScS contact is simply reduced
by the opening of the gap in the quasiparticle spec-
trum. However, for ¢¢ # 0 the transmission coefficient,
D(e, @), includes the modification of the local DOS near
the contact by the formation of an Andreev bound state
(ABS) with energy below the gap edge, as well as the
particle-hole coherence amplitudes which alter direct
(ee) transmission and generate branch-conversion (eh)
scattering.

The relative importance of the direct (ee) and branch-
conversion (eh) processes to the phase dependence of the
thermal conductance depends on the barrier transparency
D. For both processes the ABS plays a central role in
controlling the phase modulation of the conductance. The
bound state leads to a reduction in the local DOS near the
contact and to a corresponding suppression of the trans-
mission coefficient for excitations with € = A. For mod-
erate to high-transmission barriers (D = 0.5) this leads to
suppression of the thermal conductance for ¢ = . For
low-transmission barriers (D < 1) multiple Andreev re-
flection leads to a shallow bound state just below the con-

tinuum edge at €, = A4/1 — Dsinz(%). The spectral weight

of the ABS is derived from the continuum states near
€ = A, which suppresses the divergence at € = A at
the cost of a large, but finite, resonant enhancement
in the transmission of quasiparticles at energies, € =~
Al + %Dsinz(%)], above the gap [Fig. 2(c)]. The reso-
nance generates a strong enhancement of the thermal
conductance as the phase is tuned to ¢ = 7. These fea-
tures, as well as the evolution of the phase modulation of
the conductance with barrier transmission, are shown in
Fig. 2, where we plot the normalized conductance,
k(p)/k(p =0) for 0<D =1 and T=05A (T =
0.72T.). For intermediate values of the barrier transpar-
ency, D = 0.5, the phase dependence of the conductance is
a nonmonotonic function of ¢ for 0 = ¢ = 7 [Fig. 2(b)],
although the amplitude of these oscillations is very small.
For D =1, transmission with branch conversion drops
out (D, = 0) and the transmission coefficient for the
quasiparticle heat current reduces to D(e, @) =
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FIG. 2 (color online). (a) The thermal current as a function of
¢ and barrier transparency, D. The thermal conductance is
normalized for each D by its value at ¢ = 0. (b) Nonmonotonic
oscillations of «(¢) for D =~ 0.5. (c¢) Normalized transmission
coefficient at ¢ = 7 showing the resonant transmission for
D < 1, and the suppressed transmission for D — 1. The reso-
nance peak is at €, = A(1 + D/2).

(2 — A?)/[€* — Azcosz(%)], with a resulting thermal
conductance in agreement with Ref. [6] for a pinhole.

We compare Eq. (4) for D << 1 with the heat current
obtained by perturbation theory from a tunneling
Hamiltonian (TH) description of SIS tunnel junctions.
Based on the TH method Guttman et al. [5] obtained a
heat current of the form I, + I, cos¢. If we expand D to
leading order in the barrier transmission probability, D,
we obtain the TH result for the conductance from the
linear response limit of Eq. (2) of Ref. [5(b)],

00 €? — A’cosep (Of
KtH = ﬂNfoD fA dffﬁ(ﬁ) (7)

This result has an unphysical divergence due to the sin-
gularity at € = A. In the TH method the divergence is
regulated by an ad hoc procedure. Guttman et al [5]
required a finite temperature difference and A(T,) #
A(T,) for the gaps of the two superconductors. However,
Egs. (4)—(6) for arbitrary transparency show that the
unphysical divergence is not a singularity of the limit
6T — 0, but a failure of perturbation theory in the tunnel
Hamiltonian, which does not include the change in the
spectrum near the contact. The bound state and the reso-
nance regulate the singularity obtained in perturbation
theory and lead to a thermal conductance that is non-
analytic, ~D InD, but vanishes for D — 0. The result for
k(¢) to order D also has nonperturbative corrections to
the phase modulation of the conductance, which includes
terms « cos¢ as well as sinzgln(sin2 %),

2 ¢

Kk(P) = Ky — Klsinzgln<sin 5>+K281n

29

2 s
where x; = ksech’(A/2T), k = A N;v;D(A?/4T?),
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FIG. 3 (color online). The temperature dependence of phase
modulation of the thermal conductance for ¢ = 7r, normalized
by the conductance at T,., ky = %zﬂlevaCD. Shown for
comparison is the conductance for ¢ = 0.

ko = k [ dxx*sech*(xA/2T), k, = —(1 + InD)k; +
K@T/A)[1 — tanh(A/2T)] + ¢}, and c=
2 [¥ dxxInx[1 + (A/T)vVx* + 1tanh(AvVx* + 1/2T)] X
(x2 + 1)732sech?(Avx% + 1/2T). The relative magni-
tude of the nonperturbative correction, k,/k,, is approxi-
mately 25% for D = 0.01 at 7/T. = 0.8 and increases
with decreasing temperature.

For general transparency the magnitude of the phase
modulation of the thermal conductance is a maximum
for ¢ = 7, except for a small range of barriers with
D = 1/2. The temperature dependence of the conduc-
tance for ¢ = 7 is plotted in Fig. 3. The thermal con-
ductance for ¢ = 0 is also shown for comparison. For
moderate to high-transmission junctions (D = 1/2) the
thermal conductance for ¢ # 0 is suppressed relative to
the conductance at ¢ = 0 at all temperatures. However,
for low-transparency junctions (D < 1) resonant trans-
mission of quasiparticles just above the gap edge leads to
an increase in the conductance when T drops below T..
This effect is pronounced for junctions with D =< 0.2; its
observation would provide a test of this theory of phase-
induced resonant transmission of quasiparticles.

The results above were obtained in the clean limit for
the superconducting leads. In the diffusive limit, k! <
{ < &, where ¢ is the elastic mean-free path, the exci-
tations and pairing correlations are governed by Usadel’s
diffusion equations [14] for Ehe Fermi-surface averaged
propagators, @?‘R‘K = fd2pf@5f’R’K(e, p; R). For an ScS
contact Nazarov derived a boundary condition for the
propagator in diffusive conductors [15],

e 1 2D[§,, §;] >
72808l ﬂRb<4+D<{g2,@1}—2> y

where §; is the Keldysh matrix representation for the
@f’R’K, R, is the barrier resistance for normal leads, and
(+)p = [dDp(D).../ [ dDp(D)D is an average over a
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distribution of channels with transmission coefficient D
characterizing the interface. For a single channel contact
with transmission coefficient D application of Eq. (9)
yields the result from Egs. (4)—(6) obtained in the ballis-
tic limit with the replacement N;v,;AD/4 — 1/2€*R,,.
Thus, the phase modulation of the thermal conductance of
small Josephson weak links are the same in the clean and
diffusive limits. This result is due to the cancellation
of impurity renormalization of the diagonal and off-
diagonal self-energies in the propagators for s-wave
superconductors up to order a/£,, and that Nazarov’s
boundary condition is based on a junction model with a
central layer and interface described by Zaitsev’s bound-
ary condition.

In summary, we have presented a theory for heat
transport through Josephson weak links. For high-
transmission junctions the reduction in states with
€ = A, resulting from the formation of an ABS near the
Fermi level, leads to a suppression of the conductance
near ¢ = 7. For small transparency, the presence of a
shallow bound state produces a resonance in the contin-
uum just above the gap edge. This leads to an increase in
conductance as the temperature drops below T, for junc-
tions with ¢ = 7. For a single channel contact, these
results are insensitive to impurity scattering and hold in
the clean and dirty limits.
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