
P H Y S I C A L R E V I E W L E T T E R S week ending
15 AUGUST 2003VOLUME 91, NUMBER 7
Quantum Toys for Quantum Computing: Persistent Currents Controlled
by the Spin Josephson Effect

Gen Tatara and N. Garcia
Graduate School of Science, Osaka University, Toyonaka Osaka 560-0043, Japan

Consejo Superior de Investigaciones Cientificas Serrano 144, 28006 Madrid, Spain
(Received 21 March 2003; published 15 August 2003)
076806-1
Quantum devices and computers will need operational units in different architectural configurations
for their functioning. The unit should be a simple ‘‘quantum toy,’’ an easy to handle superposition state.
Here such a novel unit of quantum mechanical flux state (or persistent current) in a conducting ring
with three ferromagnetic quantum dots is presented. The state is labeled by the two directions of the
persistent current, which is driven by the spin chirality of the dots, and is controlled by the spin (the
spin Josephson effect). It is demonstrated that by the use of two connected rings, one can carry out
unitary transformations on the input flux state by controlling one spin in one of the rings, enabling us to
prepare superposition states. The flux is shown to be a quantum operation gate, and may be useful in
quantum computing.
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FIG. 1. The system of chirality-driven persistent current with

algebra, and it is essential that the electron wave function three ferromagnetic dots.
The realization of quantum mechanical two-level sys-
tems and controlling the superposition of the states in
experiment is a fundamental but also an interesting sub-
ject. Such systems have been intensively studied recently,
since controlling them is a starting point of the realiza-
tion of quantum computers [1]. Such two-level systems,
called qubits, have been implemented, for instance, in ion
traps [2], nuclear spins [3], and in Josephson junctions [4].
In the case of flux in the Josephson junction, the two-level
states are states with persistent currents in a supercon-
ducting loop with different directions. The current is
induced by a magnetic flux through the ring, and the
quantum superposition of the two current states was
observed recently by a fine-tuning of the flux [4].

In this Letter, we present a novel quantum mechanical
flux state, which is controlled by controlling the spin in a
quantum dot. The flux here is due to a persistent current in
a conducting ring, but of different origin than the
Josephson qubit; namely, the current is induced by spin
chirality. By putting three (or more) quantum dots which
carry quantum spin, we show that the wave function of
the flux is controlled by that of the spins. The realization
of the superposition state of flux is thus realized simply
by creating a superposition state on one of the spins. We
also demonstrate that this system can be used to create
entangled states of two or more spins. This ‘‘quantum
toy’’ also works as a quantum logic gate, which may be
useful in quantum computers. We also discuss the more
sophisticated case of two rings coupled, where we can
carry out unitary transformations on the current state.

The existence of the spontaneous current in a small
ring in contact with three or more ferromagnets when
the three magnetization vectors form a finite solid angle
was pointed out recently in Ref. [5]. The effect is due to
the breaking of the time-reversal symmetry in the orbital
motion as a consequence of noncommutativity of the spin
0031-9007=03=91(7)=076806(4)$20.00 
is coherent over the ring. The current was shown to be
proportional to the noncoplanarity (spin chirality) of the
three magnetizations, �S1 � S2� � S3, where magnetiza-
tions are represented by classical vectors S1, S2, and S3.

Here we consider the case where the magnetization is a
quantum spin of S � 1=2, which is carried by ferromag-
netic dots on the ring (see Fig. 1), in which case the same
reasoning as in Ref. [5] applies. In coupling quantum
spins in dots to conduction electron, one might worry
about the Kondo effect, which screens the spin [6]. This
does not, however, occur in the present system of small
ring, since the screening is suppressed by the discreteness
of the energy levels in the ring, �E ’ vF=L (� 2 K in
semiconductors if L�1�m), where vF and L are the
Fermi velocity and the length of the ring. The spins in
the dots can then be regarded as qubits. Note that the
decoherence time of the electron spin is known to be
much larger in general in nanostructures than that for
the charge due to the smallness of the spin-orbit coupling
[7]. We treat perturbatively the coupling between the
conduction electron and the spins in the dots. The equi-
librium current at x is calculated from J�x� �
�e �h=2m�ImTr��rx 
rx0 � �G�x; x0; � � 
0�jx�x0 , where
G�x; x0; �� � 
hTc�x; �� � cy�x0; 0�i is the thermal Green
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function, and the trace is over the spin indices. The
interaction with the spins in the dots can be expressed
by the potential V�x� � 
�S�x� � �, where S�x� �P

iŜSi��x
 ai�, ai being the position of ferromagnetic
dots (i � 1; 2; 3), and � representing the effective cou-
pling between the electron and quantum spin, ŜS. The
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Green function is determined by the Dyson equation,
G � g� gVG, where the free Green function is denoted
by g. By noting that the free Green function is symmetric
under spatial reflection, g�x; x0� � g�x0; x�, and by sum-
ming over a path contributing to the current and its time-
reversed path, the contribution to the current J�x� at nth
order in V is shown to be proportional to
X

xi

Tr�V�x1�V�x2� � � �V�xn� 
 V�xn� � � �V�x2�V�x1�rxg�x; x1�g�x1; x2�g�x2; x3� � � � g�xn; x�: (1)
The second term in the square bracket corresponds
to the contribution from the time-reversed path.
Since Tr�V�x1�V�x2� 
 V�x2�V�x1� � �2S��x1�S��x2� �
Tr����� � 0, we immediately see that the leading con-
tribution is from the third order with xi 2 Fi, which reads

ĴJ�x� �
e �h
m

Z d!
2�

f�!�rxIm�gx1g12g23g3x0 jx0�x

� 4�3�ŜS1 � ŜS2� � ŜS; (2)

where we have used Tr��i�j�k � 2i!ijk, f�!� is the
Fermi distribution function and gij � gr�ai 
 aj; !�
(i; j � x; 1; 2; 3) is the retarded free Green function. In
the case of the one-dimensional ring, the result is

ĴJ � J0ĈC3; (3)

where ĈC3 � �ŜS1 � ŜS2� � ŜS3 and J0 � 
2e�vF=L� �
cos�kFL���=!F�

3 [8]. The state of the system is thus
specified by a combination of states of the spin qubits ŜSi
and a current qubit ĴJ. The current takes a value according
to the ’’volume’’ of the three spins, �ŜS1 � ŜS2� � ŜS3. The
magnitude J0 of the present persistent current is different
from the conventional one due to a magnetic flux through
the ring [9,10] by a factor of ��=!F�3. The appearance of
the current is due to the symmetry breaking of the charge
[U(1)] sector, as in the case of the current in Josephson
junction. But note that here the U(1) symmetry breaking
was due to the noncommutativity of spin [SU(2)] sector
(‘‘spin Josephson effect’’).

Classically, spin chirality C3 � �S1 � S2� � S3 (with
Si’s as classical vectors) vanishes if any of the Si’s are
parallel to each other, and is thus read as an XOR opera-
tion. To be explicit, we choose S3 k z, and then C3 �
1
2 �S

x
1S

y
2 
 Sy1S

x
2�. If we label the state Si �

1
2 x̂x as 0 and

Si �
1
2 ŷy as 1, the result of C3 is written as C3�00� �

C3�11� � 0, C3�01� � 
C3�10� �
1
8 [states are labeled

by �S1S2�], and hence jC3j is classical XOR. We can also
label S1 �

1
2 x̂x as 0 and 
 1

2 x̂x as 1 for S1, and S2 �
1
2 ŷy as 0

and 
 1
2 ŷy as 1 for S2, fixing the direction of S1 and S2 in

the x and y direction, respectively.We then have C3�00� �
C3�11� �

1
8 and C3�01� � C3�10� � 
 1

8 and this is an-
other XOR if we read the sign of C3 as 0 and 1.

Let us see how the quantum operation works. To re-
move an irrelevant degeneracy due to rotational symme-
try, we fix S3 in the z direction. Then the quantum
operator ĈC3 reduces to ĈC2 �

1
2 �ŜS1 � ŜS2�z �

i
4 �ŜS

�
1 ŜS



2 


ŜS
1 ŜS
�
2 �. The eigenvalues & and eigenstates (represented by
jSz1S
z
2i) of ĈC2 are obtained as & � 0 for j� �i � j0�i and

j

i�j0
i, & � 1
4 for �1=

���
2

p
��j�
i�e
��=2�ij
�i��

jRi, and &�
1
4 for �1=

���
2

p
��j�
i�e��=2�ij
�i��jLi.

Note that the current states jRi and jLi correspond to
the entangled states as a result of ‘‘square-root swap’’
operation [11]. As is expected from the classical picture of
the current appearing when the three spins points in x, y,
and z directions, it is useful to describe the spin state by
use of different quantization axis for S1 and S2. We
choose the axis of S1 as in the x direction, and that of
S2 in the y direction. For instance, j0i � jxi and j1i �
j
 xi for S1 is written as j� xi � �1=

���
2

p
��j�i � j
i�.

Then states of the two spins are expressed in terms of
eigenstates of ĈC2 as

j� x;�yi �
1

2
�j0�i � ij0
i� �

i���
2

p jRi;

j� x;�yi �
1

2
�j0�i 
 ij0
i� �

i���
2

p jLi:

(4)

By taking the expectation values, we see that the classical
XOR gate mentioned above is reproduced by taking the
expectation value, hĈC2i.

In order to implement quantum operations, we need to
kill the unwanted state without current, j0�i. These states
carry finite total Sz�� S1z � S2z�, Sz � �1, and thus are
deleted by use of projection into Sz � 0 subspace, which
we write as P0. (Note that jRi and jLi are eigenstates of
Sz � 0.) After the projection, the mapping (4) reduces to

P0j� x;�yi ��
i���
2

p jRi; P0j� x;�yi ��
i���
2

p jLi; (5)

and we have a direct correspondence between the quan-
tum spin states and two states of the current. The opera-
tion here is a modified quantum XOR gate [neglecting the
coefficient of �1=

���
2

p
�]:

jS1;S2i C2

j00i ! jRi

j01i ! ei�jLi

j10i ! jRi

j11i ! ei�jLi:

(6)

The extra factor of ei� can be removed by a single spin
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FIG. 2. Two rings coupled (a) with one spin in common and
(b) with two spins in common. The current state J2 in the
second ring is a result of a unitary transformation of J1
specified by �);*�. (c),(d): An example of operation on the
flux by controlling S4. In (d), a superposition state of current in
the second ring is created from the R state in the first ring.
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operation if one wants. We can easily check that this
operation correctly maps the superposition state of the
spin into the corresponding superposition state of the
current.

The operation is obviously extended to the case of more
qubits. For instance, 4-bit operation is carried out by
putting five Si’s on a ring, with S5 fixed in z direction.
The current in this case is found (by a similar calcula-
tion) to be proportional to the five-spin-chirality, ĈC12345,
obtained as

ĈC12345� ��ŜS1� ŜS2� � ŜS3�ŜS4 � ŜS5����ŜS3� ŜS4� � ŜS5�ŜS1 � ŜS2�


��ŜS2� ŜS4� � ŜS5�ŜS1 � ŜS3�

���ŜS1� ŜS4� � ŜS5�ŜS2 � ŜS3�: (7)

We can show that this ĈC12345 works as XOR and AND

operation combined in rather a complex way.
In the gate proposed here, the single qubit operation is

achieved by applying a different magnetic field on each
qubit, and for this purpose, magnetic scanning-probe tips
might be useful [7]. The magnetic field to point the quan-
tum mechanical spin in the desired direction can be a
pulse as in the case of pulsed NMR [3]. For successive
operation, one needs somehow to translate the quantum
information carried by the current into the spin direction,
to be used as inputs of the next step calculation, and this
may be carried out by combining two rings (see below).
The present gate has a great advantage if we just want the
result of a single operation [but on 2n qubits (n � 1)].

As is seen from the above consideration, our systems
can be used as a preparation tool of an entangled state of
two or more spins. For instance, in the case of three spins
Si (i � 0; 1; 2), with S0 k z, we can create an entangled
state of jS1S2i � �1=

���
2

p
�j � 
i � ij 
 �i by projecting

the current state into jRi or j6Li, respectively. The current
state is implemented by putting magnetic flux through the
ring (i.e., by inducing conventional persistent current)
[12]. By carrying out unitary transformations for the
spins in the above states, we can obtain various super-
position states. Entangled state of three spins is also
straightforward. We combined two rings as in Fig. 2(a),
with one spin S2 in common. Thus the current states
for the first ring, J1, are described as jRi1 � j�
i12

ij
 �i12 and jLi1 � j �
i12 � ij
 �i12, where j� 
i12
denotes the state of S1 and S2. Let us point S4 on the
second ring in an arbitrary direction described by the po-
lar coordinates �);*�. Then the current state of the sec-
ond ring is written in terms of S2 and S3 as

jRi2 �
1

2
�sin)�e
i*j � �i 
 ei*j 
 
i�


 �cos)� i�j � 
i 
 �cos)
 i�j 
 �i23;

jLi2 �
1

2
�sin)�e
i*j � �i 
 ei*j 
 
i�


 �cos)
 i�j � 
i 
 �cos)� i�j 
 �i23:

(8)
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Thus if we prepare by the use of the magnetic field the
state jRi for both of the rings, i.e., jR1R2i, the realized
spin state on the two rings is

jR1R2i �
1

2
� 
 sin)e
i*�j � 

i � ij 
 ��i�


 �cos)
 i�j � 
�i

� i�cos)� i�j 
 �
i123; (9)

and hence the entanglement of the three spins can be con-
trolled by �);*�. We notice that for ) � 0, jR1R2i)�0 �

�e
i�=4=

���
2

p
��j� 
�i � j
�
i�123 and for ) � �,

jR1R2i)�� � �ei�=4=
���
2

p
��j� 
�i 
 j
�
i�123 and this

is equal to 
jR1L2i)�0. This means that if we start from
the state jR1R2i with S4 k z and flip S4 to be S4 k 
z, we
obtain a state jR1L2i; the current in the second ring is
reversed. Thus the total flux created by the current is 2 in
the initial state, but is switched off to be zero by reversing
S4; i.e., by reversing spin we can vanish the flux even if
current exist in each ring. [See Fig. 2(c).]

An alternative way to couple two rings is to share two
spins [Fig. 2(b)]. In this case, the currents J1 and J2 are
both determined by S1 and S2, but the state can again be
controllable by S4. In fact, pointing S4 k �);*�, the cur-
rent states of the first ring are translated into the current
states of the second ring as (after projection P0)

jRi1 �
ei�=4���

2
p

�

sin2

)
2
jRi2 � cos2

)
2
jLi2

�
;

jLi1 �
e
i�=4���

2
p

�
cos2

)
2
jRi2 
 sin2

)
2
jLi2

�
:

(10)

Thus one can create from a current in ring one any
superposition of jRi and jLi on the second ring. [See
Fig. 2(d).]

The readout of the target bit is carried out by measur-
ing the flux arising from the persistent current. Such
measurement on a single ring has been successfully car-
ried out in the case of conventional persistent current in a
076806-3
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ring of gold [13] and GaAs-AlGaAs [14]. Let us give an
estimate of the present effect.We consider as an example a
ring of GaAs-AlGaAs as in Ref. [14], where vF ’ 2:6�
105 m=s, !F ’ 1:3� 10
2 eV. For a ring with a diameter
of 2 �m, we have J ’ 14� ��=!F�3 nA. The coupling �
depends on the distance of the conducting layer in the
semiconductor, but for the case where it is close to the
interface with the ferromagnet, �=!F would be close to
the value in the ferromagnet; �=!F ’ 0:2 (i.e., effective
coupling �� 2:6 meV). So the current would be 0:1 nA.
The flux due to this current is not large but may be
detected with the present lock-in technique.

We propose here an alternative detection of the flux
state by the use of a Hall-like effect in the four-terminal
setup. In the presence of flux (or persistent current), the
four-terminal conductance through a ring is expected
to be asymmetric with respect to the flux, and a finite
difference of the conductance arises when the voltage
and current leads are reversed [15]. The difference
(which may be regarded as a ‘‘Hall conductance,’’ GH)
is expected in our system to be GH ’ �e2=h� �
��=!F�3C3[�e2=h�O�10
2�] for the above estimate
and if C3 �O�1�. This is of the order of typical atomic
size contacts of semiconductors, and would be measur-
able. The electric measurement, being very sensitive,
detection of very small spin chirality C3 would be pos-
sible, as well as the system with smaller coupling �.

Much larger current would be obtained if we use a
superconducting ring of p-wave order parameter, such
as Sr2RuO4 [16], since the arising persistent current be-
comes macroscopic. Some semiconducting materials
[such as GaAs)] are known to switch to be ferromagnetic
when magnetic impurities are doped; (Ga,Mn)As [17].
Such host materials would show a high polarizability
when in contact with ferromagnets, and thus would be
suitable for the experimental realization of the present
effect, because the coupling � will increase and thus the
value of the current.

We have shown that the current qubit in a small ring
can be controlled by use of spin chirality by attaching
three ferromagnetic quantum dots. The physics behind
this is the ‘‘spin Josephson effect,’’ which is a SU(2)
analog of Josephson effect in superconductors. The spin
chirality is equivalent to the quantum mechanical Berry
phase carried by the spin. This Berry phase is a ‘‘fictitious
magnetic flux,’’ which does not affect the phenomena in
the macroscopic world. In nanoscales, in contrast, it can
be used to operate logic gates just in the same way as
‘‘real’’ magnetic flux can. This is a novel architecture of
quantum logic gates. The quantum current states are de-
scribed as entangled states of two or more spins. By use of
coupling of two or more rings, unitary transformations
076806-4
can be carried out on the current states and superposition
states can be prepared. Experimental demonstration of
this quantum toy would be interesting, because this can be
used as a unit for quantum computing. Implementation by
the use of rings of semiconductors or p-wave supercon-
ductors would be, in particular, interesting.
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