
P H Y S I C A L R E V I E W L E T T E R S week ending
15 AUGUST 2003VOLUME 91, NUMBER 7
Surface Phase Transitions Induced by Electron Mediated Adatom-Adatom Interaction
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We propose that the indirect adatom-adatom interaction mediated by the conduction electrons of a
metallic surface is responsible for the
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, 3� 3 structural phase transitions observed in Sn=Ge

(111) and Pb=Ge (111). When the indirect interaction overwhelms the local stress field imposed by the
substrate registry, the system suffers a phonon instability, resulting in a structural phase transition in
the adlayer. Our theory is capable of explaining all the salient features of the
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transitions observed in Sn=Ge (111) and Pb=Ge (111), and is in principle applicable to a wide class of
systems whose surfaces are metallic before the transition.
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(left) and 3� 3 (right) phases

of Sn=Ge (111). In the experiment, one third monoatomic layer
of tin was deposited onto a Ge(111) surface, and a gradual
transition from the room-temperature flat
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low-temperature 3� 3 phase was observed [1,2]. In the new
phase, one Sn adatom moves up and two move down in each
Such charge corrugations propagate at the surface to 3� 3 unit cell.
Over the years, a great deal of effort has been devoted
to experimental studies of structural phase transitions
at surfaces. One compelling example is the
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3� 3 transition in the 1=3 monolayer of Pb or Sn on
Ge(111) directly observed by the scanning tunneling
microscopy (STM) [1–3](see Fig. 1). These studies have
stimulated an active line of theoretical research, yet the
precise nature and the underlying mechanism of such
transitions are still highly controversial. The original
paper attributed this transition to a charge density wave
(CDW) driven by two-dimensional (2D) Fermi surface
nesting [1,2]. Subsequent papers have attributed the tran-
sition to a Kohn anomaly [4], bond density waves [5], a
pseudo-Jahn-Teller transition [6,7], a surface Mott insu-
lator [8], dynamical fluctuations [9], a soft phonon [10],
and most recently to disproportionation [11]. The issue
becomes even more intriguing after the observation of the
delicate role of defects in the transition [12,13].

In this Letter, we present a new mechanism for surface
phase transitions, which places central emphasis on the
indirect adatom-adatom interaction mediated by the two-
dimensional conduction electrons of a metallic surface.
When such adatom-adatom interaction overwhelms the
local stress field imposed by the substrate, the system
suffers a phonon instability, leading to a structural phase
transition. The theory can explain all the salient features
of the transition observed in Sn=Ge (111), including the
appearance of surface CDW and the delicate role of de-
fects. It also predicts a glassy phase in such systems.

The electron mediated adatom-adatom interaction
originates from the tendency of the conduction electrons
to screen external disturbances. In the adlayer systems
such as Sn=Ge (111), the dangling bond electrons of the
adatoms form a quasi-2D electron gas at the surface. The
movement of an adatom disturbs the electron gas, which
responds in the form of Friedel oscillations in its density.
0031-9007=03=91(7)=076103(4)$20.00 
reach other adatoms, thereby establishing an indirect
interaction between adatoms. We note that the basic
physics is similar to RKKY interaction between spins
[14] and chemisorption of adatoms at metal surfaces
[15–17].

We stress that the central ingredients of this picture are
the existence of surface conduction electrons and their
capability of coupling with the displacement of the ada-
toms (electron-phonon coupling). Both are evidently
present in Sn=Ge (111) and Pb=Ge (111). As shown in
Fig. 1, each Sn adatom bonds to three Ge substrate atoms
directly under it, leaving one bond dangling. The elec-
trons in the dangling bonds are localized in the surface
and form a 2D electron system with a narrow ( � 0:5 eV)
half-filled band. When an adatom is displaced, the angles
between the dangling bond and its three saturated Sn-Ge
bonds have to adjust accordingly, inducing a variation in
the s-p hybridization of the electron states of the Sn
adatom, and a corresponding change in the energy of
the dangling state [18]. This process can be described by
2003 The American Physical Society 076103-1
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FIG. 2. (a) F�x� in Eq. (3) (as a comparison, the triangles are
the results of tight-binding calculations up to the fifth nearest
neighbors for the

���
3

p
�

���
3

p
structure). In this system, the Fermi

momentum kF �
����������
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�

�������
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p
=�31=4a�, where � is the density

of the surface electrons and a is the lattice constant. (b) Phonon
dispersion [Eq. (4)] along the direction �M shown in the inset,
with �=J1 � 7. The shaded area indicates the unstable phonon
modes, of which the most unstable K0 mode defines the 3� 3
periodicity.
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the Holstein electron-phonon coupling [19], where the
dangling state energy of an adatom depends on its dis-
placement as �d � �0 � �z, with z being the adatom
displacement perpendicular to the surface, and � a posi-
tive constant, reflecting that a downward displacement
induces a higher dangling state energy.

The total Hamiltonian of the system is written as

H �
X

i;s

��0 � �zi�c
y
iscis � t

X

hiji; s

cyiscjs �
�
2

X

i

z2i ; (1)

where zi is the displacement of the adatom located at
site i, and cyis (cis) is the creation (annihilation) operator
of a dangling bond electron at site i and with spin s. The
hopping constant t is between nearest neighbors and can
be regarded as independent of the adatom displacement
because the leading correction term is second order in zi.
The term involving � is the elastic energy of the lattice
distortion caused by the displacements of the adatoms; it
represents the local stress field imposed by the substrate.
Here, we consider only a single electron band formed by
the dangling bonds, because all other bonds of Sn are
saturated and form electron bands well below the Fermi
energy [20]. In Eq. (1), the higher order terms in zi are
ignored for the moment. As will become clear in later
discussions, Eq. (1) is sufficient for determining the
structural stability of the system, while the higher order
terms are important only in stabilizing the system after
the system becomes unstable.

The stability of the
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phase can be examined

perturbatively by expanding the total energy change up to
the second order in the adatom displacements,

E �
�
2

X

i

z2i � �hni
X

i

zi �
1

4

X

ij

Jij�zi � zj�2; (2)

where hni is the average electron number for each adatom,
and Jij are the coupling coefficients for the adatom-
adatom interaction. In the continuum limit, we have

Jij � 8�2
X

�q<�F

X

�k>�F

exp�i�q� k� � �Ri �Rj��

�q � �k

�
8n2�2

�F
F�kFjRi �Rjj�; (3)

where �q (�k) is the energy dispersion of the electron
band, �F is the Fermi energy relative to the band bottom,
and contains implicitly the hopping constant t. The co-
efficients Jij are the same as for the 2D RKKY coupling
[21], and are oscillatory spatially with an asymptotic
dependence of � sin�2kFr�=r

2, as shown in Fig. 2(a). In
the case of the
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structure of Sn=Ge (111), the

coupling between the nearest neighbors is positive; there-
fore, two nearest neighboring adatoms tend to displace in
opposite directions.

Keeping only the interacting terms between nearest
neighbors, we can reduce Eq. (2) to
076103-2
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J1
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X

hiji

~zzi~zzj; (4)

where ~zzi � zi � �=��hni�. This equation shares the same
form as the phenomenological charge compensate model
(CCM) [22], which has been shown to be capable of
interpreting most of the STM images. Our theory thus
provides the microscopic mechanism behind the success
of the CCM model.

From Eq. (4), it is evident that the system becomes
unstable against adatom displacements when the elastic
restoring force is weak. This can be illustrated with the
phonon dispersion of Eq. (4) [10]:

!2 � �� 6J1 � J1
X

l

cos�k �Rl�; (5)

where the sum is over six nearest neighbors. When
�=J1 < 9, ! becomes imaginary for certain k vectors
[Fig. 2(b)], indicating that the corresponding phonon
modes become unstable (phonon catastrophe) and the
system is driven into new phases. Note that the soft
phonon picture suggested in Ref. [10] is a very special
case of our model, occurring only when �=J1 is exactly
equal to 9. Furthermore, the phonon instability estab-
lished here does not require any special properties of
the Fermi surface such as the Fermi surface nesting, nor
076103-2
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does it rely on the electron-electron interaction, which is
the focus of many earlier efforts with little success [8,23].

Higher order terms become important when the system
enters the unstable regime. Microscopically, those terms
may arise from a variety of sources, such as anharmonic-
ity in the elastic energy, finite width of the electron band,
higher order terms in expansions of the site energy, and
the hopping constant t. The precise form of these higher
order terms may affect the quantitative details of the
phase transition, such as the amplitudes of adatom dis-
placements and preference among the nearly degenerate
ground states, but the occurrence and nature of the tran-
sition is totally determined by the intrinsic instability
represented in Eq. (4). For this reason and simplicity, we
assume that the higher order terms mainly come from the
anharmonic terms of the on-site elastic energy,
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~zz3i �
 
4

X

i

~zz4i ; (6)

where � > 0 and  > 0. � is positive, because displacing
an adatom out of the surface weakens the bond strengths
between the adatom and the substrate atoms.

By adding those higher order terms into Eq. (4), we can
determine the stable configurations. The numerical re-
sults are shown in Fig. 3. The ratio �=J1 determines the
phase transition. When �=J1 � 9, the ground state is the
flat
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phase.When 6 � �=J1 < 9, the ground state

is the 3� 3 phase in the one-up–two-down configuration:
In each unit cell of the 3� 3 lattice, one Sn adatom moves
up (z"), while the other two move down (z#), and the
displacements satisfy z" � 2jz#j . The nearly degenerate
one-down–two-up configuration has a higher energy due
to the cubic term in Eq. (6). Such 3� 3 patterns were also
observed experimentally [7,24]. Note that the 3� 3
structure corresponds to the most unstable phonon
mode in Eq. (5) [see Fig. 2(b)].

When �=J1 < 6, the system shows kinked-line con-
figuration and behaves similar to a glass [25]. Starting
with random initial configurations, we always end up
with a metastable disordered structure as typified in
FIG. 3. Schematic images of the stable configurations for
different parameter regimes. (a) 3� 3 phase for 6 � �=J1 <
9; (b) kinked-line phase for �=J1 < 6 .

076103-3
Fig. 3(b), instead of the true ground state 3� 3.We expect
a similar behavior in a realistic experiment with finite
cooling rates: The system is trapped in one of the meta-
stable states, showing a disordered configuration. Such
behavior is directly related to the property of the single
body potential of an adatom,

1

2
��� 6J1�~zz

2
i �

�
3
~zz3i �

 
4
~zz4i ; (7)

which develops a double-well shape when �=J1 < 6. As a
result, the present model can be mapped onto an Ising
antiferromagnet by considering the displacement ~zzi tak-
ing discrete values at the local minima of the double-well
potential. Such an Ising antiferromagnet on a triangular
lattice is known to have an exponentially large number of
degenerate ground states [26].

As quantitative estimates, for Sn=Ge we have � �
MSn!

2
ph � 1:8 eV= �A2 [10]; �F � 0:3 eV [20], and � is

of the order of 1 eV= �A [8]. Based on Eq. (3), we get J1 �
0:8 eV= �A2 and �=J1 � 2. This result indicates that the
electron mediated adatom-adatom interaction is indeed
strong enough to induce the structural phase transition for
Sn=Ge. For Sn=Si, we have larger values of � and �F
because of stronger Sn-Si bond strength and smaller Sn-
Sn distance. Both suggest a larger value of �=J1, which is
qualitatively consistent with the experimental observa-
tions that the
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in Sn=Ge and Pb=Ge but not in Sn=Si.
The structural phase transition manifests itself by an

accompanying charge density wave, as observed experi-
mentally [1,2]. Following the Hellmann-Feynman theo-
rem, we obtain the total force acting on an adatom
Fi � �zi � �hnii �O�z3�. Setting Fi � 0 in equilib-
rium, we have hnii � hni � ��=��~zzi �O�~zz3�, showing
that adatoms displaced upward gain electrons while those
downward lose electrons. The Coulomb energy induced
by such charge transfer renormalizes the parameters in
Eq. (2) as �! �� ��=��2U and Jij ! Jij � ��=��2Vij,
where U and Vij are the on-site and off-site Coulomb
repulsion energy, respectively. For Sn=Ge, we take U�
1 eV [8] and the worst case scenario Vij � 0; this leads to
�=J1 � 6, still in the parameter regime for the existence
of the structural instability.

We now study the finite temperature behavior of the
system by applying the Metropolis Monte Carlo algo-
rithm [27] to the effective classical Hamiltonian shown
in Eq. (4) along with Eq. (6). We find that the transition
between the
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second order with a sharply defined boundary, as shown
in Fig. 4. There exists another boundary between the
glassy phase and the 3� 3 phase, which is the result of
the glassy states at T � 0 when �=J1 < 6. As is typical in
a glassy system, the boundary of the glassy phase is not
well defined. The detailed behavior of the
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3� 3 phase transition along the temperature axis is
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FIG. 4. Phase diagram of the system. The boundary between
the glassy phase and the 3� 3 ground state is not well defined
as indicated with the dashed line. T0 � J21= , � � 0.

P H Y S I C A L R E V I E W L E T T E R S week ending
15 AUGUST 2003VOLUME 91, NUMBER 7
shown in Fig. 5. The order parameter is chosen as the
mean square corrugation of the thermoaverage positions
of adatoms [22]. The defect-free system clearly shows a
second-order transition from the 3� 3 phase to the
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phase as seen in Fig. 5, where the temperature depen-
dence of the order parameter is well fitted by A�1�
T=Tc�1=2. This is different from the prediction of the
Ginzburg-Landau–type theories such as the CCM, where
the critical behavior follows j1� T=Tcj [22].

Figure 5 also shows that the sharp phase transition is
blurred by the presence of a very low concentration of
substitutional defects, explaining the experimental obser-
vation that the transition is gradual. In our calculations,
the defect is simulated by a constant displacement, z �
��=�, where � is the site energy difference between a
Ge substitutional defect and a Sn adatom [4]. Just as in the
experiments [12,22], our simulations show that each de-
fect induces a local 3� 3 patch above Tc, and the size of
0 0.1 0.2 0.3
T/T

0
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FIG. 5. Temperature dependence of the order parameter for
the defect-free system and the system with 1% defect. The
thick solid line shows the function A�1� T=Tc�

1=2 with
Tc=T0 � 0:18, T0 � J21= . The parameters are �=J1 � 8:5,
J1 � 1,  � 1:0, and � � 0:1, with a simulation system size
of 99� 99.
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each individual 3� 3 patch decreases gradually with the
increasing temperature.

In conclusion, we have presented a complete theory to
understand the surface phase transitions observed in
Sn=Ge (111) and Pb=Ge (111). The central ingredients of
the theory, namely, the electron mediated indirect inter-
action and the resulting phonon instability, are concep-
tually very general, and applicable to a wide class of
systems whose surfaces are metallic before the transition.
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