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Lévy Statistics for Random Single-Molecule Line Shapes in a Glass
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We demonstrate that the statistical behavior of random line shapes of single tetra-tert-butylterrylene
chromophores embedded in an amorphous polyisobutylene matrix at T � 2 K is described by Lévy
statistics as predicted theoretically by Barkai, Silbey, and Zumofen [Phys. Rev. Lett. 84, 5339 (2000)].
This behavior is a manifestation of the long-range interaction between two-level systems in the glass
and the single molecule. A universal amplitude ratio is investigated, which shows that the standard
tunneling model assumptions are compatible with the experimental data.
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dard model. For example, are the TLSs uniformly dis- coupled to N such independent two-level systems will
Experimental advances [1] have made it possible to
measure the fluorescence of a single molecule (SM) em-
bedded in a glass. Because each individual molecule is in
a unique static and dynamic environment, the fluores-
cence of chemically identical SMs varies from molecule
to molecule. In this way the molecules serve as local
reporters on the dynamics and statics of the host glass.
SM experiments have been performed both in low-
temperature glasses [2–6] and recently close to the glass
transition temperature [7]. For low-temperature glasses
the fundamental question is this: Is the standard tunneling
model valid for glasses? Related questions are how to
analyze the complex line shape behaviors of SMs in
glasses, and what do their random behaviors teach us on
the SM-glass system.

The standard tunneling model [8] was suggested in the
early seventies to explain universal features of glasses;
for example, many glasses show a heat capacity which
is nearly linear in temperature. At the center of this
phenomenological model is the concept of the two-level
system (TLS). It is assumed that at cryogenic tempera-
tures excitations in glassy materials are two-level tunnel-
ing systems whose energies and tunneling matrix
elements are randomly distributed. More recently, Geva
and Skinner [9] modeled behaviors of SMs in glasses
based on the standard tunneling model. Orrit and co-
workers [2,3] used the fluorescence of single terrylene
molecules in the polymer polyethylene to obtain the first
direct experimental proof that two-level systems actually
exist in an amorphous material. More recent experiments
[4] revealed behaviors not compatible with the standard
model for 21 out of 70 molecules; e.g., a molecule coupled
to a three-level system [10]. We note that a fundamental
first-principle understanding of TLSs is still missing,
although numerical simulations of Heuer and Silbey
[11] give some evidence on the microscopic nature of a
few of these entities, while Lubchenko and Wolynes [12]
relate the TLSs to motions of domain walls in the glass.

There are many open questions concerning the stan-
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tributed in space, or do they preferentially appear at
boundaries of clusters of atoms/molecules, as suggested
in [13]? Another open question is the nature of the inter-
action between the TLSs and the SM; e.g., is it dipolar as
suggested in [9]? A method to obtain this important
information using SM spectroscopy was suggested in
[14] (see details below).

A theoretical investigation of the distribution of ran-
dom line shapes of SMs in glass was carried out in [14,15]
based on the standard model approach [9]. Interestingly,
the theoretical results obtained in [14] showed that the
problem of random line shapes of SMs in glasses is related
to Lévy statistics; thus, the generalized central limit
theorem [16] applies to this problem. This connection to
Lévy statistics is a manifestation of long-range interac-
tions between the TLSs in the glass and the SM (see
details below). We note that Lévy statistics is known to
describe several other long-range interaction models in
diverse fields such as turbulence [17] and random mag-
netic systems [18]. Stoneham’s theory [19] of inhomoge-
neous line broadening in crystals with defects is based on
long-range forces, and it can be interpreted in terms of
Lévy statistics [15].

In this Letter we analyze the statistical properties of
random line shapes in a glass and compare it to the
theoretical predictions in [14]. In Fig. 1 we show eight
lines of single tetra-tert-butylterrylene chromophores
embedded in an amorphous polyisobutylene matrix at
T � 2 K. For experimental details, see [20]. The lines
are typically multipeaked similar to the numerical pre-
dictions in [9]. Each line is different from any other line,
since each individual SM is in a unique environment. The
multipeaked behavior of the line shapes in Fig. 1 can be
qualitatively explained using standard model arguments.
If a SM is coupled to a single slow flipping TLS embedded
in its vicinity, we expect that when the TLS flips from its
up state to its down state or vice versa, the SM absorp-
tion frequency will shift. In this case, the line shape of the
SM is a doublet. It follows that the frequency of a SM
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FIG. 1. Line shapes of single tetra-tert-butylterrylene chro-
mophores embedded in an amorphous polyisobutylene matrix
at T � 2 K. Note the doublet and quartet features of some of
the line shapes due to strong coupling to one or two TLSs. One
of the molecules has three peaks, indicating the possibility that
this molecule is coupled to a three-level system. This rare type
of behavior is not consistent with the standard tunneling
model. Another possibility is that measurement time was not
long enough in this case.
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jump between 2N states. Hence, as shown in Fig. 1, the
single molecule’s line shape will be composed of 2N

peaks. The width of these peaks depends on the dynamics
of TLSs situated far from the molecule, fast dephasing
processes, and the lifetime of the electronic transition
[9,14,21,22].

To obtain the lines in Fig. 1, we used the spectral trail
technique introduced by Moerner and co-workers [23],
following the spectral activity of the molecule during a
scan time which in our experiments was fixed to be
120 sec. Following the jump history of the SM enables
us to identify the peaks in Fig. 1 as originating from a SM.
Without using this method it is practically impossible to
say if the lines in Fig. 1 are due to contributions from
several SMs or originate from a SM.

Random multipeaked lines as shown in Fig. 1 are a
novel feature of SM spectroscopy, not observed in en-
semble averaging techniques. To obtain information on
the SM-glass system, we investigate the distribution of
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the line shapes of SMs in a glass. Mathematically, we are
dealing with the question of the distribution function of a
function [i.e., the line I�!L� is a function of laser fre-
quency]. Recently, Refs. [14,15] suggested to characterize
the line shape of each molecule by its cumulants
�1; �2; �3; . . . . Thus, each line is characterized by an
infinite set of cumulants, which are random variables
that vary from one molecule to the other, thus reflecting
the disordered nature of the glass. The distribution func-
tions P��1�; P��2�; P��3�; . . . completely characterize the
statistical properties of the line shapes of SMs in a glass.
The cumulants are obtained from the moments of the line
shape [24], mn �

R
!n

LI�!L�d!L, according to the well-
known relations �1 � m1, �2 � m2 � �m1�

2, etc. From
244 SM spectra, we obtained the histograms of the first
two cumulants, P��1�; P��2�; which yield important in-
formation on the glass-SM system. We consider here the
distribution of the cumulants and not the distribution of
the moments, since the cumulants were predicted to be
described by Lévy statistics [14].

To better understand the meaning of our data analysis
and the relationship to Lévy statistics, it is useful to recall
five main assumptions of the model used in [9,14]. (i) The
absorption frequency of the SM follows a stochastic
trajectory described by !�t� � !0 �

PN
n�1 �n�t��n�r�,

where !0 is the bare frequency of the molecule. �n�t�
are random functions of time which follow a two-state
process, �n�t� � 1 when the nth TLS is in the up state or
�n�t� � 0 when it is in the down state. Thus, the flips of
the TLSs induce spectral diffusion. The flipping rate
between the up and down states is determined by a rate
R which varies from TLS to TLS [the distribution of
jumping rates of TLSs in a glass spans many orders of
magnitude from nanoseconds to (at least) days]. (ii) The
SM frequency shifts are �n � 2�������A=E��1=�rn�3�.
The most important ingredient of the theory is the long-
range interaction between the TLS and SM, � / 1=r3,
reflecting the assumption of dipolar interaction. This
long-range type of interaction is the first important in-
gredient in the relationship between SM spectroscopy in
glasses and Lévy statistics. Other parameters controlling
the frequency shifts are �, the SM-TLS coupling con-
stant; E �

�����������������
A2 � J2

p
, the energy splitting of the TLS;

����, a dimensionless function of order unity describing
the orientation of the TLS and SM; and finally, the ran-
dom parameters of the TLS: A (asymmetry parameter)
and J (tunneling matrix element). (iii) The TLSs are
uniformly distributed in space and are noninteracting.
This assumption is the second important condition for
Lévy statistics to be valid. (iv) The standard tunneling
model is valid; this model determines the distribution of
parameters describing �n and Rn as well as the density of
TLSs. Note, however, that the Lévy statistics and results
in [14] are not limited to this model. (v) The stochastic
Kubo–Anderson theory of line shapes is applicable,
implying weak laser fields. Under these conditions, the
following two limiting behaviors were found [14].
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The first case corresponds to the fast-modulation limit
�n 
 Rn for all TLSs in the vicinity of the molecule. In
this case, also called motional narrowing limit, the lines
of individual molecules are Lorentzian in shape. Then
the lines are characterized by two parameters only, e.g.,
the width at half maximum and the center location. The
distributions of these two parameters are Lévy stable laws
[14]. From Fig. 1 it is clear that the fast-modulation limit
does not describe our experimental results.

The second case corresponds to the slow-modulation
limit. If Rn 
 �n for all the TLSs in the vicinity of the
molecule, the shape of the line is random and typically
multipeaked [14]. In this slow-modulation limit the dis-
tributions of line shape cumulants, P��1�; P��2�; P��3�;
etc., are all Lévy stable. Specifically, the probability
density function of the first cumulant �1 is given by the
symmetrical Lévy density, P��1� � l1;0��1�, namely, the
Lorentzian

P��1� �
1

�
z1

�2
1 � z21

; (1)

where z1 is a scaling parameter which can be calculated
from the theory in [14]. In Fig. 2 we show that our
experimental results are compatible with the theoretical
prediction. We also fitted our results to a Gaussian proba-
bility density (not shown) and found that the distribution
of the first cumulant is definitely not Gaussian.

We note that the reference frequency, determining the
laser detuning in Fig. 1, was chosen on the maximum
intensity of the spectrum of the SM !max, while the
theoretical reference frequency in [14] was the bare fre-
quency of the molecule !0. Using numerical simulation
based on the approach in [9], we observed that also when
the reference frequency is chosen as !max distribution of
first cumulant is well fitted by a Lorentzian, in agreement
with the experimental results in Fig. 2. The value of z1 in
the two approaches slightly differs, as we discuss below.
We now discuss the distribution of the second cumulant
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FIG. 2 (color online). Probability density of the first cumu-
lant �1 (units are GHz). The dots are experimental results; the
curve is a one-parameter fit to a Lorentzian.
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(i.e., the variance), which is not sensitive to definition of
the reference frequency.

The distribution of the second cumulant �2 is given by
the one-sided Lévy stable law, P��2� � l1=2;1��2�, namely,
Smirnov’s one-sided probability density

P��2� �
1

�z1=2�2
2����
�

p

�
2�2

z21=2

�
�3=2

exp

�
�
z21=2
2�2

�
; (2)

where the scaling parameter z1=2 was derived in [14]. As
shown in Fig. 3, the experimental data for the distribution
of �2 are compatible with the theoretical prediction; the
long tail of the Lévy stable law is visible. Yet, data of a
larger number of molecules is needed to improve the
statistical fluctuations. The analysis of a larger number
of molecules will also enable us to compare theory and
experiments for the higher-order cumulants �3, �4, etc.

As mentioned, the Lévy behavior is due to the long-
range dipolar interaction of a SM with many TLSs, hence
the Gauss or Lévy central limit theorem arguments are
expected to hold. The Lévy central limit theorem applies
since averaged frequency shifts diverge; h�i /

R
1
0 rd�1=

r3dr � 1, where d � 3 is the dimensionality of the prob-
lem (for mathematical details, see [14]). Hence, the Lévy
behavior obtained for the distributions P��1� and P��2� is
used to test the assumptions of dipolar interactions and
uniform-distribution of the TLSs in space. The informa-
tion about the random distribution of the parameters of
the glass, i.e., A and J, are contained in the values of z1=2
and z1, which we now discuss.

There are two distinct types of parameters describing
the SM-glass system: those describing the bath of TLSs
and the coupling constant � which depends on the proper-
ties of the SM probe. An important unsolved problem is
how to extract information from SM experiments which
is sensitive only to the statistical properties of the TLSs
and is not affected by � [5]. The scaling parameters z1
and z1=2 depend on �; the magnitude of these two pa-
rameters depends also on the precise modeling of the
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FIG. 3 (color online). Probability density of the second cu-
mulant �2 (units GHz2). The dots are experimental results; the
curve is a one-parameter fit to Smirnov’s probability density.
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orientation function ���� [14]. Thus, z1 and z1=2 are not
universal functions, in the sense that they depend on
properties of the SM under investigation and not on the
properties of the glassy state (which are supposed to be
universal, according to the standard tunneling model). In
fact, Donley et al. [5] suggested that the coupling con-
stant � itself should be a random variable. This may seem
to limit our ability to investigate low-temperature glasses
with SM spectroscopy. If the statistical analysis of line
shapes depends on an additional unknown distribution
function of the coupling constant (besides the standard
distributions of the glass parameters), fitting of data to the
theory becomes rather arbitrary.

However, based on Eq. (9) in [14] one can show that the
ratio z1=2=z1 depends only on the statistical properties of
the glass and not on the distribution of the coupling
constant �. More precisely,

z1=2
z1

�
1�������
2�

p
hAE sech�

E
2kbT

�iAJ

hAE
1

1�exp�E=kbT�
iAJ

; (3)

where the averaging is performed over the TLS parame-
ters A and J [14]. Since Eq. (3) is independent of the exact
distribution of �, it is a useful tool for describing the
behavior of glasses. To derive Eq. (3) we assumed that the
random variable � is independent of the glass parameters
A and J.

From our fits we find z1=2 � 0:175 GHz and z1 �
0:0485 GHz, which yields z1=2=z1 � 3:6. The theoretical
prediction based on Eq. (3) yields z1=2=z1 � 2:4. The
deviation between theory and experiment is now ex-
plained. As mentioned, the theoretical prediction is based
on the assumption that the bare frequency of the molecule
!0 is the reference frequency for measurement. Using
numerical simulations [9] with the parameter set relevant
for our experiment (details will be published), we find
that the ratio of z1 when !0 is the reference frequency and
z1 when !max is the reference frequency is z!0

1 =z!max
1 �

1:6. Varying the value of � in our simulations, in the
interval 10 GHz nm3 <�< 40 GHz nm3 we observed
that the ratio z!0

1 =z!max
1 does not depend on �. As ex-

pected, z!0
1 > z!max

1 since the value of �1 becomes smaller
(in a statistical sense) if we assign the origin to the
maximum of the spectrum. Using the correction factor
z!0
1 =z!max

1 � 1:6, we find that the theory yields z1=2=z1 �
3:8. Taking into account that the standard tunneling
model does not address the chemical composition of the
disordered system or the chemical and geometric details
of the SM under investigation, we believe that the theo-
retical result is in surprisingly reasonable agreement with
experiment. Measurements of the ratio z1=2=z1 for other
types of SMs and glasses and for a wider range of control
parameters (i.e., temperature and scan time) will show
whether SM data are compatible with the universal pre-
dictions of the standard model.

To summarize, SM spectroscopy is an excellent
method to investigate disordered systems by removing
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the ensemble averaging found in other techniques. We
have shown that our experimental results are compatible
with Lévy statistics and with standard tunneling model
predictions. In particular, the following two assumptions
are reasonable: (i) The two-level systems are uniformly
distributed in space. (ii) The frequency shifts are caused
by dipolar interactions � / 1=r3. We introduced the uni-
versal ratio z1=2=z1, which is sensitive to details of the
standard model, but not to the coupling of the SM to the
TLSs in the glass (i.e., not to �). The comparison between
the theoretical and the experimental value of this ratio
can be used to test the validity of the standard model
predictions.
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