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Asymmetric Stationary Lasing Patterns in 2D Symmetric Microcavities
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Locking of two resonance modes of different symmetry classes and different frequencies in 2D
resonant microcavity lasers is investigated by using a nonlinear dynamical model. The patterns of
stationary lasing states and far fields are asymmetric in spite of the symmetric shape of the resonant
microcavity. The corresponding phenomenon is actually observed in the experiment of a 2D semi-
conductor microcavity laser diode.
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that when two modes of different symmetry classes are
locked, the pattern of a stationary lasing state becomes
asymmetric.

and Un�x; y� � 0 on the edge of the cavity. Second, it
is assumed that only two modes of slightly different
Advances in processing technology have made it pos-
sible to make new types of 2D microcavity lasers with
potential applications as light sources and other key com-
ponents in integrated optical circuits. 2D microcavity
lasers also present a practical and versatile stage for
fundamental research of morphological effects of reso-
nant cavities on laser operation [1–5]. Lasing in whisper-
ing gallery modes has been realized in microdisks [6–9].
Lasing has also been demonstrated in deformed micro-
disks which trade off the efficiency of optical confinement
to obtain sufficiently strong or directional output [3,4].
When the disk shape is deformed, the cavity can become
partially chaotic, in the sense that some ray trajectories
are chaotic. However, the relation between cavity shape
and optical confinement of low loss modes in partially
chaotic cavities can still be described in terms of ray
trajectories, and well understood from the viewpoint of
ray-wave correspondence and quantum chaos [3–5].
Recently nonlinear dynamical simulations have also
shown that stable lasing in a fully chaotic cavity is pos-
sible in spatially chaotic pattern of the light field of a
resonance mode [10].

All of the previous works have focused on the morpho-
logical effects on single-mode lasing in 2D microcavities.
In this Letter, we present the dynamics of two-mode
lasing in 2D microcavities for the first time. The route
to locking of two modes is shown theoretically and nu-
merically. We also show that locking of two modes is
actually observed in the experiments of a 2D semicon-
ductor microcavity laser.

It is important to note that most of the 2D micro-
cavities previously studied are symmetric with respect
to the x and y axes such as an elliptic cavity. Then the
resonance modes are divided into four symmetry classes:
 ab��x; y� � a ab�x; y� and  ab�x;�y� � b ab�x; y�
with the parities a 2 f�;�g and b 2 f�;�g. We show
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The dynamics of the slowly varying envelope of the
electric field ~EE, the polarization field ~��, and the popula-
tion inversion component W is described by the
Schrödinger-Bloch model [10–12] when the 2D micro-
cavity is confined in the waveguide which is wide in the
xy directions and thin in the z direction, and the refrac-
tive index suddenly changes on the edge of the cavity;
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where space and time are made dimensionless by the
scale transformation �nin!sx=c; nin!sy=c� ! �x; y� and
t!s ! t, respectively. In the above, !0 is the transition
frequency of the two-level medium while !s is the oscil-
lation frequency of the light field slightly different from
!0, and the refractive index n equals nin inside the cavity
and nout outside the cavity, and �L�x; y� is the linear
absorption coefficient, which is the constant �L inside
the cavity and zero outside the cavity. The two (dimen-
sionless) relaxation parameters ~��? and ~��k are the trans-
versal relaxation rate and the longitudinal relaxation rate,
respectively, and W1 is the external pumping parameter.
~�� is the dimensionless coupling strength, � � ~��=!0 and
�0 � !0=!s � 1.

First, we assume the refractive index is extremely high
in order to analyze the Schrödinger-Bloch model theo-
retically. Then the cavity modes become the bound states
Un satisfying the Helmholtz equation inside the cavity,
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FIG. 1. Resonances of a microstadium cavity. The double and
single circles correspond to the resonances of the maximum
and second maximum gain.
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oscillation frequencies obtain positive gain. Then, the
electric and polarization field can be expanded by these
two modes [13,14],

~EE�x; y; t� �
X
n�1;2

En�t� exp��i��nt� n��Un�x; y�; (5)

~���x; y; t� �
X
n�1;2

pn�t� exp��i��nt� n��Un�x; y�; (6)

where En�t� is real while pn�t� is complex, and �n
and  n are the frequency and the phase of the mode n,
respectively.

We also assume that these two modes belong to differ-
ent symmetry classes. Therefore we obtain the following
important properties of the forth-order integrals:
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Solving Eqs. (1)–(3) by a perturbational method [13,14]
for the small electric field and using Eq. (7) yields the
following equations:
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where � � �1t� 1 � �2t� 2, �0 � 2�N� �h~��=�~��?,
$0 � 4~��2=~��? ~��k, and Iij �
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When W1 is large enough, Eqs. (8)–(10) have two
stable fixed points �s;� � ��=2�� corresponding to
the stationary lasing states and two unstable fixed points
��; ��� where �1 � �2 � �0 and
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Therefore, two modes belonging to the different symme-
try classes can lase with the same locking frequency, and
then the pattern of the lasing state becomes asymmetric.

In the case of the actual microcavities, the refractive
index should be finite and the cavity modes are the
resonances instead of the bound states. Therefore the
nonlinear dynamical simulation for Eqs. (1)–(3) is neces-
073903-2
sary to study the dynamics of two-mode lasing in 2D
microcavities.

In our simulation we chose a stadium [15] for the
cavity shape consisting of two half circles of the radius
R � 49=4

���
2

p
� 8:75 and two flat lines of the length 2R as

shown in Fig. 2. We set the refractive index inside and
outside the stadium nin � 2 and nout � 1, respectively.
The other parameters are reported to be as follows:
~��k � 0:003; ~��? � 0:006; � � 4:0; �L � 0:004; N� �h!0 �
1:0�~�� � 0:5;�0 � �0:07.

The resonances obtained by the extended boundary
element method [10,16] are shown in Fig. 1. The reso-
nances denoted by the double circle and circle are close to
the gain center �0 � �0:07 and have long lifetimes. We
call them modes A and B, respectively. The wave func-
tions of modes A and B corresponding to these resonances
are shown in Figs. 2(a) and 2(b). Modes A and B belong to
the different symmetry classes: Mode A belongs to
 ���x; y� while mode B belongs to  ���x; y�.

First let us explain single-mode lasing on mode A. As
the pumping power W1 is increased more than Wsing �
1:5� 10�4, the total light intensity inside the stadium
grows exponentially and saturates to be a constant for
arbitrary initial states. The wave function of the final
stable state excellently corresponds to the wave func-
tion of mode A. Therefore, only mode A can lase in this
region of W1.

Next we discuss two-mode lasing on modes A and B.
Mode-pulling phenomena here can be classified into qua-
siperiodic behaviors of 2D tori and limit cycles. When
W1 is increased more thanWt � 1:9� 10�4, mode B also
can obtain enough gain to lase. When Wt <W1 <Wl �
1:0� 10�3, the interaction between modes A and B is
small and hence the time evolution of the light field is
quasiperiodic as if there exist two independent modes of
different oscillation frequencies �1 and �2. As W1 is in-
creased more than Wl, the interaction between modes A
and B becomes larger. Consequently, the light field is
attracted into a limit cycle. When Wl <W1 <Wlock �
5:6� 1:0�3, the optical spectrum has two large peaks
073903-2



FIG. 4 (color). (a) A trajectory on the ring-type KAM torus
in the oval billiard. (b) An asymmetric locking state associated
with the ring-type KAM torus.

FIG. 2 (color). The wave function of the metastable resonance
of (a) the double circle and (b) single circle in Fig. 1. These
wave functions are solutions of the linear Schrödinger-
Helmholtz equation. The symmetry classes of these modes
are, respectively, (a)  ���x; y� and (b)  ���x; y�. The white
curve denotes the stadium cavity.
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at �1 and �2, respectively, corresponding to modes A and
B, and small peaks of their higher harmonics. The fre-
quency difference j�1 � �2j decreases as the pumping
power increases, as shown in Fig. 3(a).

Finally we explain locking of modes A and B. When
W1 > Wlock, the total intensity of the light field inside the
cavity grows exponentially at first and shows the relaxa-
tion oscillation, and at last becomes stationary. The fre-
quency difference j�1 � �2j vanishes at W1 � Wlock as
shown in Fig. 3(a), and hence the optical spectrum has
only one peak. The final stationary lasing state has an
asymmetric pattern as shown in Fig. 3(b) in spite of the
symmetric shape of the cavity.

We have thus far reported the dynamics of two-mode
lasing in a 2D microcavity of the stadium shape. Here we
emphasize that we checked the same route to the locking
of two modes in the microcavities of elliptic and oval
shapes. Therefore, we conclude that the dynamics of two-
mode lasing described above is not unique for the stadium
shape but universal for those 2D microcavity lasers which
are symmetric with respect to the x and y axes.
FIG. 3 (color). (a) The difference of the frequencies �1 and �2
corresponding to the two lasing modes decreases as the pump-
ing power increases. (b) The asymmetric pattern of the final
stable oscillation of the light field.
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In the case of the oval-shaped cavity [17,18], there
exists a stable periodic orbit of a ring type because it is
a so-called mixed system. Accordingly, the trajectory
around this closed ring trajectory forms a 2D torus called
a Kol’mogorov-Arnol’d-Moser (KAM) torus as shown in
Fig. 4(a). Linear wave mechanics gives us two resonances
of different symmetry classes associated with this KAM
torus [4,5,18]. The difference of their frequencies is very
small, and hence they are easily locked to produce an
asymmetric lasing pattern associated with the ring-type
KAM torus as shown in Fig. 4(b).

In order to observe locking of two modes associated
with the ring-type KAM torus, we actually fabricated
the ‘‘quasistadium shape’’ microcavity laser diode by a
molecular beam epitaxy-grown graded-index separate-
confinement heterostructure single-quantum-well
(GRIN-SCH-SQW)GaAs=AlGaAs structure and reactive
ion etching as shown in Fig. 5 [19]. The cavity length L,
the width W, and the radius R of the curved end mirrors
are 600, 60, and 600 -m, respectively. Therefore, this
quasistadium microcavity satisfies the confocal resonator
condition. The sidewall mirrors are separated from both
GaAs substrate
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FIG. 5. Schematic diagram of the confocal quasistadium
laser diode.
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FIG. 6. (a) Observed far field pattern at the output power of
10 mW. (b) Calculated far field pattern for the locking state of
two modes associated with the ring-type KAM torus.
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cavity ends by distance Ws � 160 -m. The p-contact
area was formed along the closed ring trajectory shown
in Fig. 5 in order to lase only the resonance modes asso-
ciated with this trajectory.

A pulse current with 500 ns width and 1 kHz repetition
was used for evaluation. Threshold current was evaluated
to be 153 mA. The optical spectrum has a peak at the
wavelength of 862 nm. Figure 6(a) shows the observed far
field patterns at the output power of 10 mW. The origin of
the angle corresponds to the cavity axis. The far field
pattern shows highly directional emission in two direc-
tions which correspond to the closed ring trajectory. In
addition, the far field pattern is asymmetric although the
quasistadium is symmetric. The measurement of the far
field pattern is very slow, and so this asymmetric pattern
is stationary.

We calculated the resonance modes by the extended
Fox-Li mode calculation method [20,21]. We found two
resonance modes of slightly different frequencies around
the observed wavelength 862 nm and different symmetry
classes of  ���x; y� and  ���x; y� that have low loss and
localize on the closed ring trajectory. The Schrödinger-
Bloch model is not applicable to this laser because of the
lack of computational power. Therefore we just super-
posed these two modes and obtained the asymmetric
pattern in Fig. 6(b) nicely corresponding to the observed
pattern. Consequently, we conclude that we observed
locking of two modes of different symmetry classes in
the real experiment of the semiconductor microcavity
laser diode.
073903-4
Two-mode lasing in 2D microcavity may well find
applications for modulation and switching in optical
communications and integrated optical circuits.
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