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Route to Nonlocality and Observation of Accessible Solitons
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We develop a general theory of spatial solitons in a liquid crystalline medium exhibiting a
nonlinearity with an arbitrary degree of effective nonlocality. The model accounts the observability
of accessible solitons and establishes an important link with parametric solitons.
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FIG. 1. Planarly aligned nematic liquid crystal cell for the
observation of spatial solitons. �̂��X� is the low-frequency
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pointed to this connection as an intriguing one between
distinct fields of modern physics and, provided the re-

voltage-induced angle displacement. �0 � ���0� and � is the
perturbation due to the propagating optical field.
In various areas of applied nonlinear science, non-
locality plays a relevant role and radically affects the
underlying physics. Some striking evidences are found in
plasma physics [1–3], or in Bose-Einstein condensates
(BEC) [4,5], where, contrary to the prediction of purely
local nonlinear models, nonlocality may give rise to, or
prevent, the collapse of a (plasma- or matter-)wave. In
nonlinear optics, particularly when dealing with self-
localization and solitary waves, nonlocality is often as-
sociated to time-domain phenomena through a retarded
response (see, e.g., [6,7]); spatially nonlocal effects have
been associated to photorefractive [8–11] and thermal or
diffusive responses [12,13]. To assess the role of non-
locality, theoretical studies tend to distinguish between
highly and weakly nonlocal behaviors [14–16], by com-
paring the spatial extent of the material response (the so-
called kernel function) and the optical beam waist.
Specific kernel functions, however, strongly depend on
the physical system and, as in the case of BEC [5], they
are hard to determine and apply to experimental results.
On the other hand, they are at the basis of the theory of
spatial optical solitons (SOS) in highly nonlocal media.

SOS have become the subject of intense theoretical
and experimental investigations, both on the grounds of
their packet nature and in view of applications, particu-
larly in the exploitation of their wave-guiding character
[17]. Diverse material properties have been studied in
conjunction with SOS existence and properties, including
various mechanisms able to counteract diffraction in
one or both transverse dimensions [18,19]. Spatial soli-
tons due to a local nonlinearity have been known since
the original work of Chiao, Garmire, and Townes with
reference to Kerr media [20]. In 1997, Snyder and
Mitchell [14] investigated SOS in a highly nonlocal sys-
tem, i.e., a medium exhibiting a power — rather than
intensity — dependent refractive index. They introduced
the term accessible solitons for those spatial solitary
waves, owing to the simplicity of the theory and trans-
verse profiles obeying the two-dimensional equation of a
quantum harmonic oscillator (which gives a Gaussian
profile similar to the so-called ‘‘gaussons’’ [21]). Shen
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quired large correlation lengths could be made available,
to the demonstration of accessible solitons as a challenge
well worth undertaking [22].

In this Letter, we introduce a model able to describe
optical spatial solitons and the smooth transition from the
purely local (in the limit of a Kerr nonlinearity) to the
entirely nonlocal case. While pursuing a general theory,
however, we chose to address a specific and available
nonlocal system, i.e., nematic liquid crystals (NLC) in a
planar cell. NLC have been proven to exhibit a substantial
nonlocal nonlinearity of molecular origin [23] and to
support �2� 1�-dimensional spatial solitons [24], even
in the case of spatially incoherent excitations [25].
After deriving the ruling equations and defining a suit-
able nonlocal parameter able to span the soliton family
from pure-Kerr or Townes-like (T) to highly nonlocal or
accessible (A) solitons, we will outline the rather remark-
able connection between our model and the equations
describing quadratic two-color solitons (or simultons) in
parametric media [26].

Let us consider the simple geometry sketched in Fig. 1:
a planar glass cell containing an undoped NLC with a
preset orientation of its molecular director. The aligned
liquid crystal, anchored at the bounding interfaces, be-
haves as a positive uniaxial with nk � nẑz and n? � nx̂x. In
the presence of an external quasistatic (electric or mag-
netic) field or special anchoring at the interfaces, the
refractive index n��� in the (x; z) principal plane can
2003 The American Physical Society 073901-1
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exhibit a distribution along x, with n? < n���x��< nk
[27]. For a light beam linearly polarized along x and
propagating along z, with transverse size well below the
cell thickness L, neglecting vectorial effects and adopting
the paraxial approximation, the evolution of the optical
envelope A is described by the Foch-Leontovich equation:
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where k0 is the vacuum wave number, n2a � n2
k

 n2? the

optical anisotropy, k2 � k20�n
2
? � n2a sin��20�

2�, � the tilt
angle of the NLC director, and �0 the tilt in the absence of
a light beam.When an external electric field applied along
x and an optical excitation as in Eq. (1) are present, � is
subject to reorientation according to [23]
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with K the relevant elastic constant taken equal for splay,
bend, and twist, 	�RF the low-frequency anisotropy, and
E the rms value of the quasistatic field.

In the absence of a light wave, therefore, the orientation
angle �̂� is determined exclusively by E and, due to sym-
metry, depends only on X [23]:

K
d2�̂�

dX2 �
	�RFE

2

2
sin�2�̂�� � 0: (3)

In our case, the boundary conditions correspond to the
planar alignment: ��X � 
L=2� � ��X � L=2� � 0. In
the general case, the angle distribution can be written as

��X; Y; Z� � �̂��X� �
�̂��X�
�0

��X; Y; Z�: (4)

Taking the cell much larger than the beam waist, we can
use (3) and (4) in (2) and neglect the derivative of �̂�. For
�̂� � �0, at the first order in � we obtain
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having chosen �0 � �=4 in order to maximize the non-
linear response [27].We write (5) in a dimensionless form
by setting A � �Ac=��a�R=Rc

����
�

p
; Z=�Zc� exp�iZ=�Zc�,

� � ��c=�� �R=Rc
����
�

p
; Z=�Zc� with A2

c � 8	�2RFE
4=

�2�0k20n
4
aK, Zc � 2kR2

c,R2
c � �K=2	�RFE2, �c �

2	�RFE2=�k20n
2
aK, and � � 	�RFE2=2�k2K. � is a

free parameter, to be used hereafter to trace the fam-
ily of spatial solitary waves, and �x; y; z� �
�X=

����
�

p
Rc; Y=

����
�

p
Rc; Z=�Zc� are normalized coordinates.

The resulting system is
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To underline the physical meaning of the parameter �,
let us consider the case � � 0 and formally write the
solution of the reorientation equation as  �
�1
r2=��
1jaj2=�2��. For large �, we obtain the fol-
lowing for the field envelope:
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Equation (7) rules collapse-free weakly nonlocal media
[3], while the neglecting of terms such as O�1=�2� de-
scribes light propagation in Kerr media which, on the
contrary, are subject to catastrophic self-focusing.
Reducing � increases the degree of nonlocality in the
interaction between the medium and the optical beam. In
the following, we will employ � as an arbitrary parame-
ter spanning the whole family of SOS; we expect large �
values to be associated to T solitons, whereas small �
will address A solitons. Note that, according to [3], when
� � 0 the fundamental solitary wave solutions of Eqs. (6)
are stable because they realize an absolute minimum of
the Hamiltonian.

Solitary solutions of (6) are defined by @z � 0. Without
loss of generality, taking a real valued we have

r2a
 a� a � 0; r2 
 � �
a2

2
� 0: (8)

Noteworthy enough, system (8) is identical to what de-
termines the profile of parametric spatial solitary waves
in ��2� media [19,26]. This makes an unexpected con-
nection between self-trapped beams in two distinct physi-
cal systems encompassing rather diverse nonlinear
optical responses: the ultrafast electronic nonlinearity
of quadratic crystals and the slow molecular reorientation
of liquid crystals. The similarity is limited only to the
profiles of the solitary waves, while their dynamic prop-
erties, such as stability, are quite different. As shown
below in a practical case, to a first approximation � is
negligible, thus the angle ‘‘adiabatically follows’’ the
light beam; in general this is not true for the harmonic
field of a parametric soliton. It is well known, in fact, that
for small � the  field (the second-harmonic for ��2�

crystals, and the reorientation for NLC) is much wider
than the a field (see Torruellas et al. in [19]). The opposite
holds true for �! 1: In the ��2�-SOS literature, this is
the Kerr limit, its dynamics resembling that of ��3� ma-
terials. In NLC, for optical beams much wider than the
reorientation profile, T solitons approximate well the
solution (in the framework of the validity of the large
cell approximation). The angle-profile perturbation is
localized close to the optical beam axis, as typically
pointed out when addressing the Kerr-like response of
073901-2
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NLC [23,27]. Here we are rather interested in the oppo-
site limit.

In Fig. 2, we graph the numerical solutions of Eqs. (6)
as obtained by a relaxation procedure. The ratio � be-
tween SOS beam and angle waists (standard deviation) is
plotted versus �. When � approaches zero, i.e., for a
response length extending well beyond the optical waist,
the  field is much wider than the a field. This is the high-
nonlocality regime. In the figure we indicate the two
opposite limits, namely A and T solitons. In the A limit,
however, it is worth proving that Eqs. (6) reduce to the
model in [14]. The authors in [14] postulated a highly
nonlocal medium in which the index of refraction could
be expressed as n2 � n20 
 �2

0�P �R2, with P the optical
power. Here we show that the NLC reorientational non-
linearity does indeed exhibit such a feature, as speculated
rather skeptically in [22].

To study the highly nonlocal regime (�! 0), first we
solve Eqs. (8), in the regions around r � 0 (r �

����������������
x2 � y2

p
)

and r! 1, and then match the resulting expressions. For
r � 0, we introduce the expanded variables [28]  �
r=�1=2 and ! � r=�1=4. Next, we express the field as
a � �âa=

����
�

p
�f�!� with f�0� � 1, while  �  �0�� � �

�1=
����
�

p
� �
1�� �. At order O�1=�1=2�, we obtain the fol-

lowing for  :

 �0�
  � �1= � �0�

 � �1=2�âa2f2��1=4 � � 0: (9)

For �! 0 with  fixed, the solution reads  �0� �  0 

âa2r2=8� �  0 
 âa2!2=8

����
�

p
. At orderO�1=�3=2�, we have

 �
1�
 � 0; at order O�1=�1=2�, the field equation reduces

to the harmonic oscillator equation in f:

f!! � �1=!�f! �  �
1�f
 �1=8�âa2!2f � 0; (10)

corresponding to the result in [14], and  0 � 1 at order
FIG. 2. Ratio � between the waists of the angle  and the
field a from Eq. (8). The insets show two different profiles
(dashed line:  ; solid line: a) for values of � addressing the two
limits in the family of solitary waves.
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O�1�. After some algebra, the perturbative approach pro-
vides the SOS profile near the origin ( �
1� � 2=!20):
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(11)

with !0 an arbitrary parameter. The appearance of an-
other free parameter reflects that, when � � 0, Eqs. (6)
are invariant with respect to the transformation �x; y� !
�x=%; y=%�, a! %a,  ! 1
%�% , with % arbi-
trary. The physical meaning of (11) can be elucidated by
expressing them in terms of the normalized beam power
P �

RR
a2 dx dy: a � �

���
2

p
P=4�� exp�
r2P=16��, and

 � 1� �P=4�� 
 �P=8��r2. The latter results can be
also obtained by using a multiple scales expansion in����
P

p
r, Pr, . . . . For the field intensity in the original vari-

ables (R �
������������������
X2 � Y2

p
), we have
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R2
c

P

P c

�
: (12)

In (12), Z0 and ' � Z0=n are vacuum and medium im-
pedances, respectively, c the speed of light in vacuum,
n � k=k0 �

�����������������������
n? � n2a=2

p
when �0 � �=4, and P c a refer-

ence power which depends on material properties and
cell polarization: P c � 16cn	�RFE

2=k20n
4
a. The soliton

profile is Gaussian and completely determined by P .
Rendering explicit the relation between P and the (inten-
sity) waist W , its existence curve is

P

P c
�

R2
c

W 2
: (13)

Let us now investigate the region of large r. According
to Eqs. (6), the asymptotic behavior of  as r! 1 is
given by the modified Bessel function:  ! GK0�

����
�

p
r�,

governing the angle decay far from the beam axis (G is a
constant to be determined). The angle in (11) and its
derivative must match the expression at infinity, providing
the turning point rT between the two regions: in the
presence (r � 0) and in the absence (r! 1) of the opti-
cal excitation, respectively. We end up with

1�
P
4�


 r2T

�
P
8�

�
2
�

�
P
8�

�
22rTK0�

����
�

p
r�����

�
p

K1�
����
�

p
r�
; (14)

which can be further simplified by taking into account
that, for large arguments, the Bessel functions K0 and K1

have the same asymptotic behavior. The approximated so-
lution is rT �

����
�

p
�8�=P�; being RT �

����
�

p
RcrT it reads

RT=Rc � P c=P . When P � P c, the profile of the
angle is dominated by the modified Bessel function, and
decays with typical length Rc. Therefore, it seems natural
to label ‘‘highly nonlocal’’ a regime when the angle
profile is much larger than the beam waist, such that
Rc � W . When the power is much greater than P c or,
equivalently, when the soliton waist is much smaller that
the extent Rc of the elastic response, we are in the
073901-3
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A-soliton regime. The power-dependent perturbation of
the refractive index is

	n�R;P � � nc

�
2P

P c


R2

R2
c

P 2

P 2
c

�
; (15)

with nc � 	�RFE
2=�nk20K. Moreover, our approach en-

ables one to go beyond the harmonic oscillator. By in-
troducing the new transverse scale ) � r=�3=8, we can
solve the resulting equation for  �0� at order O��1=4�:
 �0�
)) � �1=)� �0� 
 4)2=!60 � 0. After some algebra, we

obtain the new approximation in normalized units:  �
1� �P=4�� 
 �P=8��r2 � �P=8��3r4=4. Then, the cor-
responding power-dependent refractive index perturba-
tion reads

	n�R;P � � nc

�
2P

P c


R2

R2
c

�
P

P c

�
2
�
R4

4R4
c

�
P

P c

�
3
�
: (16)

Thus, higher-order approximations imply anharmonicity
of the nonlocal potential, with a refractive index still
depending on power. As the latter increases, higher
powers of the ratio P=P c must be taken into account,
similar to local media with regards to the powers of the
intensity.

Finally, comparing our theory with an actual experi-
mental geometry, such as employed in [24], typical pa-
rameters for a 514 nm wavelength and the E7 NLC (in
SI units) are na � 1, K � 10
11, E � 1:3� 10
4, L �
75� 10
6, 	�RF � 20 �0. Correspondingly, P c �
2� 10
6 W, Rc � 22 %m, and � � 10
6. Since P inside
the cell was of the order of 0.1 mW, we may state that in
experiments the highly nonlocal regime (P � P c) is
being addressed. The soliton waist, after (13), is of the
order of 3 %m and in agreement with the reported results.
Note that 	n�0;P � � 5� 10
4, and the angle perturba-
tion � of the order of 10
3 rad, thus justifying the
adopted model.

In conclusion, for the first time to our knowledge, we
have presented a self-consistent analytical theory of two-
dimensional spatial solitary waves in nonlocal media.
Our model has an intriguing unifying character, as it
embraces several physical systems in which light self-
trapping has recently been investigated. We believe that
most of the observed SOS in nematic liquid crystals are
indeed accessible solitons, inasmuch as NLC are highly
nonlocal. This shines new light on self-localization in
liquid crystals. Furthermore, we have presented the first
derivation of a power-dependent constitutive relation for a
real physical system, never reported elsewhere. We con-
fide that our results will stimulate new experiments to-
wards a deeper understanding of self-trapping in (highly)
nonlocal nonlinear media and the development of novel
all-optical devices [29].
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