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Entangling Strings of Neutral Atoms in 1D Atomic Pipeline Structures
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We study a string of neutral atoms with nearest neighbor interaction in a 1D beam splitter
configuration, where the longitudinal motion is controlled by a moving optical lattice potential. The
dynamics of the atoms crossing the beam splitter maps to a 1D spin model with controllable time
dependent parameters, which allows the creation of maximally entangled states of atoms by crossing a
quantum phase transition. Furthermore, we show that this system realizes protected quantum memory,
and we discuss the implementation of one- and two-qubit gates in this setup.
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FIG. 1. External beam splitter: (a) Atoms before (I) and after
(II) the separation. The nearest neighbor interaction is denoted
by W and Jx is the hopping matrix element between the two
states jai and jbi of the transverse trapping potential. Internal
beam splitter: (b) Atoms in two different internal states jai and
jbi enter the beam splitter. These internal states are coupled by
a Raman transition [see (c)] with a Rabi frequency Jx � �. A
laser excited Rydberg state jri realizes the off site interactionW
cold heteronuclear molecules [7]. Together with appropri- with w the width of the interaction zone.
The recent development of optical and magnetic micro-
traps allows the confinement of cold atoms in effective 1D
‘‘pipeline’’ geometries, where the transverse quantum
motion is frozen out [1]. Variants of these trap designs
promise the realization of beam splitters, and thus atomic
interferometry ‘‘on a chip.’’ Usually one envisions that
atoms are injected one by one into these pipelines, where
the source of cold atoms is provided by a Bose-Einstein
condensate. Instead we will study below collective beam
splitter setups which allow the generation of entangled
strings of atoms in 1D trapping configurations with ap-
plications in interferometry and quantum computing.

To this end, we assume that the longitudinal motion of
the atoms is controlled by storing atoms in a 1D optical
lattice potential generated by a standing light laser field.
In the transverse direction, the particles are confined by a
double well potential [see Fig. 1(a)] where we assume that
the optical lattice stores exactly one atom per lattice site
(i.e., one atom per double well). The preparation of such
a Mott insulating state has been reported in a recent
experiment, by loading of atoms from a Bose-Einstein
condensate via a superfluid-Mott insulator quantum phase
transition (QPT) [2]. This setup by itself is an interesting
extension of the standard ‘‘interferometry on a chip,’’ as it
eliminates collisional shifts since atoms stored on differ-
ent lattice sites never collide. Furthermore, the atoms are
supposed to be initially in the ground state which is a
spatial superposition of the particles in the two transverse
wells [region (I) of Fig. 1(a)]. By moving the lattice, we
can drag the atomic chain ‘‘by hand’’ across the beam
splitter while we increase the distance between the trans-
verse wells adiabatically depending on the position of the
atoms [i.e., we decrease the tunneling Jx between the
wells, see region (II) of Fig. 1(a)]. On the other hand,
the use of optical lattices allows the engineering of coher-
ent interactions between adjacent atoms [nearest neighbor
interaction W in Fig. 1(a)]. This can be obtained either by
cold collisions and moving optical lattices [3–5], the
remarkably strong dipole-dipole couplings of laser ex-
cited Rydberg atoms [6], or by dipole-dipole coupling of
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ate detection methods such as fluorescence imaging, these
controllable interactions provide us with the tools to gen-
erate entanglement of the 1D chain of atoms.

We will study the dynamics of the beam splitter setup
indicated in Fig. 1. In particular, we will investigate (i)
how to generate a maximally entangled state of atoms.
(ii) We will establish the formal equivalence of our model
with well-studied models of spin chains. We will show
that the system dynamics is a physical realization of a
textbook model of a QPT with completely controllable
(time dependent) parameters [8]. Thus, our setup provides
an example of engineering a maximally entangled state
from a product state via a QPT. (iii) Finally, the present
setup implements the spin analogue [9] of Kitaev’s pro-
tected quantum memory [10], where qubits are repre-
sented by Majorana fermions, which provide a stable
way to store quantum information due to an excitation
gap [11]. Our setup allows one to perform single and
(collectively enhanced) two-qubit operations.
2003 The American Physical Society 073601-1
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FIG. 2. Homogeneous setup Jxl  Jx, Wl  W: (a)
Elementary excitations "� for N � 25 against Jx=W. The
dashed horizontal line indicates the ground state energy. (b)
Upper bound and lower bound for the time T yielding a fidelity
of F � 95% as a function of N. The dashed line illustrates the
N2 scaling predicted analytically. Inhomogeneous setup Jxl , Wl:
(c) Instantaneous eigenenergies En for N � 6. (d) Upper and
lower bounds for the infidelity 1� F against N for constant
sweeping speed v � 0:01
W and different interaction zone
widths w � 0:1
 (diamonds), w � 0:2
 (solid circles), and
w � 0:4
 (open circles) and similar for Jx.

P H Y S I C A L R E V I E W L E T T E R S week ending
15 AUGUST 2003VOLUME 91, NUMBER 7
We consider a 1D chain of N atoms with modes jai and
jbi stored in an optical lattice with a lattice constant 
=2
determined by the wavelength 
 of the laser. The modes
correspond either to two spatial modes in a double well
structure, where the tunneling provides a coupling [ex-
ternal beam splitter in Fig. 1(a)], or to two internal atomic
states connected via a Raman process [cf. Figs. 1(b) and
1(c)]. We suppress hopping of the atoms between adjacent
lattice sites by a sufficiently large potential barrier. This
leads to an on site interaction U ! 1, and we assume to
have commensurate filling of one particle per lattice site.
Following [3,12], we derive a Hubbard Hamiltonian

H�t� � 2
XN�1

l�1

Wl�t��a
y
l
1al
1a

y
l al 
 byl
1bl
1b

y
l bl�

�
XN

l�1

�Jxl �t��a
y
l bl 
 alb

y
l � 
 Jzl �t��a

y
l al � byl bl��:

(1)

Here Jxl describes coupling between jai and jbi while
the operators al, bl are bosonic annihilation operators
for particles in these modes at site l with �al; bj� �
�al; b

y
j � � 0. A term Jzl emerges from an additional state

dependent superimposed trapping potential. We introduce
the spin notation �xl � ayl bl 
 alb

y
l , �zl � ayl al � byl bl,

and �yl � i�alb
y
l � ayl bl� which for nl � ayl al 
 byl bl 

1 are Pauli operators and rewrite the Hamiltonian (1) as
HS�t� �

PN�1
l�1 Wl�t��

z
l�

z
l
1 �

PN
l�1 Jl�t� � �l: Thus, our

setup is formally equivalent to an Ising chain of N spins
in a magnetic field Jl � �Jxl ; J

y
l ; J

z
l � [13,14].

Entanglement via QPT.—Moving a string of atoms
from left to right in the setup of Fig. 1(a), or switching
the lasers in Fig. 1(b) and 1(c) amounts to a time depen-
dent change of the parameters from the large tunneling
limit Jxl �t � 0� � jWlj to small tunneling Jxl �t � T� ! 0.
In the following, we assume that Jy;zl � 0 except it is
stated differently. In the homogeneous case (i.e., Jxl �
Jx, Wl � W) the variation of Jx amounts to crossing the
critical point at Jx � W of a quantum phase transition [8].
We assume that the atoms are initially prepared in the
product state j "" � � � "ix, where j "ixl � jail 
 jbil is a
superposition state of the two modes, and which is for
W � 0 the (paramagnetic) ground state of HS. Under
adiabatic variation of parameters, the system will remain
in the ground state and evolve according to (W < 0)

j
i  j "" � � � "ix ! �j "" � � � "iz 
 j ## � � � #iz�=
���
2

p

 �j0i 
 j1i�=
���
2

p
; (2)

where the states j "izl � jail and j #izl � jbil correspond to
the atoms being in the upper or lower branch of the beam
splitter of Fig. 1. The states j0i and j1i are the two
degenerate (ferromagnetic) ground states of HS for Jx �
0 with all atoms in either one or the other arm of the beam
splitter (see Fig. 1). Thus, the initial product state is
transformed to a maximally entangled state via a quan-
tum phase transition. The intuitive physical picture be-
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hind (2) is as follows. Consider atoms moving across the
beam splitter one by one. The first atom of the string will
end up in the state j "iz 
 j #iz, and attract the second
atom. This leads to a state of the form j ""iz 
 j ##iz.
After the last atom has left the interaction zone, the
maximally entangled state j0i 
 j1i has been created.

In the following, we discuss the validity of the adia-
batic approximation [Eq. (2)] and thus the usefulness of
this scheme by studying the scaling of the fidelity F �
jh idj �T�ij

2 as a function of the length of the string N
and the time variation of Jxl �t� andWl�t�. Here F compares
the state j �T�i obtained from a time dependent integra-
tion of the Schrödinger equation with the ideal state
j idi � j0i 
 j1i. This will be done first numerically,
followed by analytical calculations and estimates.

Before entering the time dependent case, we note
that for the time independent case the Hamiltonian H
has been studied extensively [8,15]. For Jzl � 0, it can
be fermionized and one obtainsHF �

P
�"��f

y
�f� � 1=2�

with the elementary excitation energies "� and fermionic
annihilation (creation) operators f� (fy� ). The spectrum
for the homogeneous case is shown in Fig. 2(a). For
large N, the spectrum of the elementary excitations is
characterized by a gap � � 2jW � Jxj for the energeti-
cally low lying quasiparticles with the exception (arising
073601-2
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from the free end boundary conditions) that the first
excited state becomes degenerate with the ground or
vacuum state (here, we do not take into account the
second term inHF; i.e., the vacuum state has zero energy)
for jWj � Jx [cf. Figure 2(a)]. For Jx � 0, the two cat-
type ground states j0i 
 j1i and j0i � j1i correspond to
the vacuum and the first excited state of the fermionized
system, respectively.

In Fig. 2(b), we plot the numerically calculated opera-
tion time T required to perform (2) with a fidelity of F �
95% for linearly changing the homogeneous couplings
Jx�t� against N (W � const). For N > 20, we find a (poly-
nomial) scaling of WT � N2 for a given infidelity 1� F
[cf. Fig. 2(b)] in agreement with the analytical results
below. By optimizing the time dependence of Jx�t� we
can speed up the entanglement process significantly.

A discussion of the spatially inhomogeneous situation
where Jxl and Wl vary as a function of l corresponding
closer to the setup of Fig. 1 is given in Figs. 2(c) and 2(d).
For increasing time, the string is moved across a zone of
nonvanishing Wl with a maximum W0 and a width w.
Simultaneously, Jxl �t� is decreased from the initial value
to Jxl �T� � 0 over a comparable ‘‘width’’ as w for all sites.
The corresponding instantaneous time dependent energy
levels are shown in Fig. 2(c). Following the lowest energy
curve in this diagram adiabatically from (1) to (2) corre-
sponds to j
i ! j0i 
 j1i. Figure 2(d) shows the infidel-
ity 1� F for finite sweeping speed v against N for
different widths w of the interaction zone. The infidelity
1� F decreases rapidly with increasing w and F scales
exponentially with N for w� 
N. For w * N
=2, the
above scaling WT � N2 is restored.

The numerical calculations behind Fig. 2 were based
on a time independent Jordan-Wigner transformation
of HS, yielding a quadratic Hamiltonian in fermionic
destruction (creation) operators "� ("y

�). By introduc-
ing Majorana operators c2��1 � �"� 
 "y

��=2, c2� �
�"� � "y

��=�2i� [10], we obtain Ht � icTA�t�c, where
the components of c are the Majorana operators and
A�t� is a 2N � 2N real antisymmetric tridiagonal matrix.
The linear Heisenberg equations of motion, _cc � A�t�c,
are then solved numerically.We note that diagonalizing A
in the time independent case yieldsHF. For the fidelity F,
we use an approximate expression which can be derived
as follows: The state j0i 
 j1i is the vacuum state of
the fermionized system at t � T. The completeness rela-
tion yields F�T� � 1�

P
n�0jhnj �T�ij

2. Here jni �
jn1; . . . ; nNi with n� � 0; 1 the occupation numbers of
the instantaneous eigenstates of HT corresponding to an
energy $�. The sum in this expression can be reordered,
and we obtain F�T� � 1�

P
N
m�1 P�m�, where P�m� �P

njhnj �T�ij
2'm;

P
ni

is the probability of having m ele-
mentary excitations in the system at time T. By solving
the above equation for c, we can in principle calculate the
quantities Al  h�

PN
m�1 f

y
mfm�

li �
PN
m�1 P�m�m

l. The fi-
delity F is then given by the solution of a system of N
linear equations. An approximate fidelity Fl can be ob-
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tained by neglecting the probabilities P�k� with k > l. We
restrict ourselves to l � 1; 2 and find F1 � 1� A1 and
F2 � 1� �3A1 � A2�=2. The exact fidelity is bounded by
these quantities: F1 � F � F2. Compared to a calculation
in the spin picture which requires the solution of �2N

equations, the calculation of A1 and A2 can be done by
solving a system of �N2 differential equations.

Let us turn to the more technical point of analytically
estimating the scaling of the fidelity F when the phase
transition point is crossed by linearly changing Jx �
�t
W with � � const. First, we note that there are
no transitions between the ground and the first excited
state since they have opposite parity. Close to the phase
transition point the energy gap to the remaining excita-
tions � � 0, and therefore at the time t � �t� the evolu-
tion of the system ceases to be adiabatic and excitations
start to be populated. The adiabaticity is restored again at
the time t� t�, when the gap � becomes sufficiently large
to prevent further excitations. Then, the relaxation of the
new phase occurs separately within different domains,
whose sizes are given by the value l0�t�� of the correlation
length at the time t�. Close to the phase transition l0 �
��1=2 and therefore the domain size scales similar to
l0�t�� ���1=2. The quench through the phase transition
point can only be adiabatic if the characteristic size of the
domain formed exceeds the size of the system L� N and
therefore l0�t�� * L, which gives the scaling condition
� & W2=N2, or WT � N2.

Quantum computing model with protected quantum
memory.—In the case W < 0, the ferromagnetic super-
position state is very sensitive to homogeneous distortions
of the form Jzl � Jz which induce a relative phase shift
exp�i2N

R
+
0 dtJ

z�t�� scaling with N [16] between the two
states j0i and j1i after a time +. Therefore, in the external
beam splitter setup where these two states are spatially
separated, they can be viewed as two arms of a
Heisenberg limited interferometer collectively enhanced
by a factorN. On the other hand, in the antiferromagnetic
case, i.e., for a repulsive interaction W > 0, the two
degenerate ground states at Jx � 0,

j0i � j #" � � � #"iz; j1i � j "# � � � "#iz; (3)

are closely related to unpaired Majorana fermions which
have been considered as candidates for storing quantum
information [9,10]. These states are expected to be in-
sensitive against perturbations since they are separated
by a gap of order W from the other states of the system
and are connected only via Nth order perturbation theory
for homogeneous couplings Jl � J. This yields stability
against spin flip errors exponentially increasing with the
number of particles in the chain N and is also reflected by
the scaling of the energy of the first excited state $1 �
�Jx=W�N for Jx <W [15]. Furthermore, if we assume that
N is even, the states j0i and j1i are completely insensitive
to global fluctuations of J since

P
l�

z
l j0i �

P
l�

z
l j1i � 0.

Then the two states j0i and j1i constitute a decoherence
free subspace [17,18] for homogeneous perturbations and
073601-3



FIG. 3. Collectively enhanced interactions between two
strings of atoms 1 and 2. (a) Antiferromagnetic setup: N=2
particles of each chain interact with strength W0 only if they
are in states j0i1j1i2 or j1i1j0i2 yielding a phase gate between
the two qubits implemented by those chains. (b) Ferromagnetic
setup: Entanglement creation between two chains of atoms via
interactions W0 in the state j1i1j0i2. Implementations with
optical lattices or atom chips, for instance, offer the scalability
of the scheme.
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can thus be used as qubits which store quantum informa-
tion reliably.

We will now discuss how to implement single and
(collectively enhanced) two-qubit gates and show that
our model realizes a quantum computer with protected
memory. The idea behind the two-qubit phase gate is
summarized in Fig. 3. Selectively overlapping the wave
functions of different two-qubit states for a time +2 colli-
sional interactions of strength W0 between the atoms lead
to an entanglement phase-2 � NW0+2=2 [3] correspond-
ing to a phase gate with a truth table j$1ij$2i !
expfi-2��$1 
 $2�mod 2�gj$1ij$2i, with $1;2 � f0; 1g.
Single qubit gates correspond to a general unitary rotation
of j0i and j1i [Eq. (3)] which can be decomposed in
Hadamard gates j0i; j1i ! j0i � j1i and the creation of
a relative phase j$1i ! exp�i$1-1�j$1i. The phase -1 can
be implemented by turning on a trap potential creating a
staggered offset of the form Jzl � Jz��1�l for a time +1 �
-1=2NJ

z. The idea behind the Hadamard gate is as fol-
lows: At Jx � Jz � 0, the states j0i; j1i represent a degen-
-5

-10

-15
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FIG. 4. Illustration of the Hadamard gate for N � 8 by adia-
batically changing Jz and Jx (unprotecting the quantum mem-
ory). We follow the lowest two eigenstates (with energies given
by the solid curves) transforming as j0i 
 j1i ! j0i and j0i �
j1i ! j1i (up to a dynamical phase) when changing Jx, Jz in
three steps (1), (2), (3) [followed by turning off Jz in step (4)]
as described in the text. Note that if the condition Jz <
W=�N � 1� is not fulfilled we get unwanted crossings and the
first excited state after step (3) will not be of the form j1i. The
dashed curve shows the third eigenenergy of the system and
the inset the path in the Jx � Jz plane.
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erate eigenspace of HS. Turning on the field Jx up to
Jx > W, thus unprotecting the qubit and switching it
off when Jz � 0, will under appropriate conditions induce
a rotation in this space. A specific example is illustrated
in Fig. 4: (1) at Jz � 0 we adiabatically switch on Jx until
Jx > W, then (2) we increase Jz, (3) we return adiabati-
cally to Jx � 0, and, finally, (4) switch off Jz.

We have shown how to generate maximally entangled
states of strings of atoms in 1D pipeline configurations.
An extension of this setup allows implementations of a
quantum computing model with protected qubits.
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0207011.

[5] O. Mandel et al., cond-mat/0301169.
[6] D. Jaksch et al., Phys. Rev. Lett. 85, 2208 (2000); M. D.

Lukin et al., ibid. 87, 037901 (2001).
[7] D. DeMille, Phys. Rev. Lett. 88, 067901 (2002).
[8] S. Sachdev, Quantum Phase Transitions (Cambridge

University Press, Cambridge, England, 2001).
[9] L. S. Levitov, T. P. Orlando, J. B. Majer, and J. E. Mooij,

cond-mat/0108266.
[10] A.Y. Kitaev, cond-mat/0010440.
[11] We emphasize the difference in the coupling of

the Kitaev model [10] and the spin model [9] to the
environment since they are connected by a nonlocal
transformation.

[12] D. Jaksch et al., Phys. Rev. Lett. 81, 3108 (1998).
[13] For further realizations of spin models with optical

lattices, see L. M. Duan, E. Demler, and M. D. Lukin,
cond-mat/0210564.

[14] Without loss of generality, we can set Jyl � 0 which can
always be achieved by an appropriate rotation of �l.

[15] P. Pfeuty, Ann. Phys. 57, 79 (1970).
[16] C. A. Sackett et al., Nature (London) 404, 256 (2000);

M. Brune et al., Phys. Rev. Lett. 77, 4887 (1996); C. J.
Myatt et al., Nature (London) 403, 269 (2000).

[17] K. Khodjasteh and D. A. Lidar, Phys. Rev. Lett. 89,
197904 (2002).

[18] D. Kielpinski et al., Science 291, 1013 (2001); D. J.
Wineland et al., Phys. Rev. A 46, R6797 (1992).
073601-4


