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Role of the Ground State in Electron-Atom Double Ionization
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Recently, absolute measurements have been reported for double ionization of helium by 5.6 keV
electron-impact. At this high energy, one would think that the first Born approximation for the
interaction of the projectile with the atom would be valid. However, on the basis of a lowest-order
implementation of a Faddeev-type approach, Berakdar [Phys. Rev. Lett. 85, 4036 (2000)] concluded that
the approximation was not valid. Here we argue that (i) it is valid at this energy and (ii) the previous
discrepancy between calculations in the first Born approximation and the overall magnitude of the
measurements was due to a poor description of the ground state.
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imprecisely. Consequently, the cusp conditions of Kato
[7] are generally not satisfied and the wave function will

 �
f and  i are not orthogonal, they are constructed in a

similar manner. Both treat all three two-body Coulomb
Measurements of electron-impact double ionization of
helium with fully determined kinematics present new
challenges to atomic collision theorists. These so-called
(e; 3e) measurements are functions of the momenta of all
three final-state electrons. The first absolute measure-
ments of this kind were reported by Lahmam-Bennani
et al. [1], based on the relative measurements of Taouil
et al. [2]. The collision energy in the experiment was
5.6 keV and the momentum transfer was small, so one
would expect a first Born approximation (FBA) for the
interaction of the projectile with the atom to be reason-
ably accurate. FBA or similar results have been reported
where the final double-continuum state of the atom was
described by a product of three Coulomb waves [1] or a
‘‘convergent close-coupling’’ (CCC) wave function [3].
The CCC results had to be scaled up by a factor of 3.2 for
comparison with the measurements and agreement in
shape was relatively poor [3]. The ‘‘correlated four-body
final-state,’’ or C4FS, Coulomb-wave model showed bet-
ter agreement in both shape and magnitude when very
simplistic hydrogenic wave functions were used for the
ground state; however, the overall magnitude was still off
by nearly 50% [1]. Moreover, when a wave function  H of
the Hylleraas [4] type was used for the ground state, the
C4FS magnitude became too large by a factor of 10 [1].

Agreement with the overall magnitude was eventually
obtained by Berakdar [5], using an extension of the well-
known Faddeev equations. These calculations, which
used a product of two hydrogenic wave functions for
the ground state [6], differed significantly for electron
vs positron impact (by about a factor of 2). Since this
should happen only if the higher-Born terms are strong,
the conclusion was that the FBA is not valid at 5.6 keV.

Here we argue that the problem lies not with the FBA,
but rather with a poor description of the ground state.
What hydrogenic and Hylleraas wave functions have in
common is that electron-electron correlation is treated
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be inaccurate when the two electrons are close together.
(Since the Coulomb potential 1=r is singular for r! 0,
the corresponding wave function must have a precise cusp
at r � 0 such that the kinetic energy also becomes sin-
gular in a way which enables the total energy to remain
constant.) This problem is resolved by using the
Pluvinage wave function [8], which treats the electron-
electron interaction to all orders of perturbation theory
and satisfies Kato’s cusp conditions exactly.

An exact evaluation of the first Born term for double
ionization of helium requires the solution of the three-
body problem for both the initial ground state and the
final double-continuum state of the atom. These solutions,
 i and  �

f , respectively, are necessarily orthogonal, i.e.,
h �

f j ii � 0, since they are eigenfunctions of the same
Hamiltonian (the minus sign in  �

f denotes the solution
with incoming scattered waves). In addition, since the
ground state is a singlet spin state, both  i and �

f must be
spatially symmetric.

If approximations are made to either wave function, the
orthogonality between  �

f and  i will generally be bro-
ken. Thus, when making approximations, some care must
be taken to ensure that spurious contributions from the
lack of orthogonality are small. A good way to test for
false contributions is to impose orthogonality artificially
by replacing  �

f with  �
f � h �

f j ii
� i. Then, if (forced)

orthogonalization leads to only small changes in the
calculated cross sections, the original lack of orthogo-
nality was not a serious problem.

In this work, we approximate  �
f by the spatially

symmetric part [9] of the well-known 3C wave function
[10,11], which contains the product of three Coulombic
distortion factors (one for each two-body Coulomb inter-
action). In the same spirit, we approximate  i by a three-
body product wave function  P due to Pluvinage [8](the
Pluvinage wave function is the doubly bound analog of
the 3C wave function). Although our approximations to
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interactions exactly, albeit independently, and satisfy the
cusp conditions of Kato [7] as any interparticle separation
tends to zero. We call this approach ‘‘FBA(3C)’’ with a
Pluvinage ground state.

We also performed FBA(3C) calculations with  H, the
same 3-parameter Hylleraas-type wave function that was
used in the C4FS calculations [1]. We found that  H leads
to an overall magnitude that is about 50% larger than
experiment (65% larger with orthogonalization), rather
than a factor of 10 larger as was found in [1]. In our
FBA(3C) calculations, the hydrogenic and Hylleraas-
type wave functions gave very similar results in both
shape and magnitude, and, as pointed out by Kheifets
et al. [3], results from the C4FS effective-charge model
should differ from FBA(3C) by only �5% for the kine-
matics considered.

The present (e; 3e) calculations are the first to use the
Pluvinage wave function  P for the ground state. We note
that  P has been used extensively by Crothers and co-
workers [12] in ion-impact studies but has otherwise been
ignored. Here we show that the use of  P leads to much
improved agreement with the overall magnitude of abso-
lute (e; 3e) measurements.

The fact that  P leads to better agreement with experi-
ment than  H is not surprising. In 1935, Bartlett et al.
[13] noticed that Hylleraas wave functions [4] lead to
infinite errors in the local energy 	H i
= i (where H is
the Hamiltonian for the atom) whenever the separation
between any two particles vanishes. This is because
Hylleraas wave functions do not diagonalize H in the
(singular) Coulomb interactions. As discussed by
Crothers and McCarroll [12], the Hamiltonian matrix
for the Pluvinage wave function is diagonal in all
Coulomb interactions and the remaining perturbations
do not have singularities. Regarding the Hylleraas wave
function near the Coulomb singularities, Bartlett et al.
[13] wrote the following. ‘‘The eigenfunction is thus
probably very badly in error in the general neighborhood
of any of these points.’’

Atomic units are used in this work except where stated
otherwise and unit vectors are denoted by a ‘‘hat,’’, i.e.,
x̂x � x=x, where x � jxj. As usual, the mass of an electron
is neglected relative to the mass of a proton.

The fully differential cross section (FDCS) for the
(e; 3e) reaction is given by [11]

d8�

dk̂k1dk̂k2dk̂k3d	k22=2
d	k
2
3=2


� 	2
4
k1k2k3
k0

jTfij2: (1)

Here k0, k1, k2, and k3 are the momenta of the incident,
scattered, and two ejected electrons, respectively.

The exact transition-matrix element Tfi is given by

Tfi � h��
f jVij�ii; (2)

where ��
f is the exact scattering wave function developed

from the final-state and
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�i � 	2
�3=2eik0�r1 i	r2; r3
 (3)

is the initial asymptotic state, where r1, r2, and r3 are
the positions, relative to the atomic center, of the pro-
jectile and the two atomic electrons, respectively. The
perturbation

Vi � �2=r1 � 1=r12 � 1=r13 (4)

is the interaction of the projectile with the target atom,
where rij � ri � rj.

In the FBA, the projectile motion is treated with plane
waves both initially and finally and exchange between the
projectile and the atomic electrons is ignored. The inte-
gration over the projectile coordinate can then be easily
performed analytically so that the transition amplitude in
the FBA is given by

T	FBA

fi � 	4=q2
h �

f j
~VVij ii: (5)

Here

~VV i � 	�2� eiq�r2 � eiq�r3
=	2
3; (6)

where q � k0 � k1 is the momentum transferred from
the projectile to the target atom.

For distinguishable electrons, the 3C wave function for
a double-continuum state of helium is given by [11]

 �
3C � 	2
�3ei	k2�r2�k3�r3
C	�2=k2;k2; r2


 C	�2=k3;k3; r3
C	�=k23;k23; r23
: (7)

Here k23 � �	k2 � k3
, the reduced mass � � 0:5 a:u:,
and C	�;k;r
 ��	1� i�
e��=21F1	i�;1;�ikr� ik � r
,
where 1F1 is the confluent hypergeometric function. Our
approximation to  �

f is the spatially symmetric part [9] of
the above 3C wave function; thus exchange between the
two atomic electrons is included in accordance with the
Pauli principle.

The Pluvinage approximation for the ground state of
helium is given by [8]

 P	r2; r3
 � �	r2
�	r3
�	k; r23
: (8)

Here �	r
 �
���������
8=

p
e�2r and

�	k; r
 � N	k
 e�ikr1F1	1� i�=k; 2; 2ikr
; (9)

where k � 0:41 a:u:(this value of k minimizes the ground-
state energy) and N	0:41
 � 0:603 37.
T	FBA

fi is evaluated using six-dimensional numerical

(Gauss-Legendre) quadrature. We estimate that our nu-
merical uncertainty for the FDCS is about 2%.

In the 5.6 keV experiment of Lahmam-Bennani et al.
[1], both atomic electrons are ejected into the scattering
plane (the plane containing k0 and k1) with the same
energy (10 eV) and the scattering angle of the projectile is
fixed at �1 � 0:45� (jqj � 0:24 a:u:, q̂q � 319�). The scat-
tering angles of the ejected electrons, �2 and �3, are
073201-2
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measured in the same sense as �1 relative to the incident
beam direction.

In Fig. 1, we compare the complete set of the above
absolute measurements with our FBA(3C) calculations. In
the figure, �2 is fixed as indicated and the cross section is
presented as a function of �3. There are 20 fixed-�2 cases
in all.

We performed two different FBA(3C) calculations —
one with  P for the ground state and the other with  H for
the ground state. In both calculations, the final-state was
orthogonalized to the initial-state. Calculations without
orthogonalization (not shown) differed by about 10%
from the corresponding calculations with orthogonaliza-
tion for either choice of ground-state wave function. Thus
spurious contributions from the lack of orthogonality are
small for both  P and  H. Only the calculations with  P

are shown, since our results using  H were simply 65%
larger in overall magnitude, with no appreciable change
in shape. The reason for the larger magnitude is that  H

has too large an amplitude in the region of space where
the two electrons are close together, which increases the
probability of double ionization.
FIG. 1. Fully differential cross section (FDCS) in the scattering p
helium. The collision energy is E0 � 5599 eVand the energies of th
electron is scattered by an angle �1 � 0:45� and the scattering angl
calculations with a Pluvinage ground state are shown as the thick
bars) are from Lahmam-Bennani et al. [1]. Also shown, where
calculations from Berakdar [5] using a Faddeev-type approach (th
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When the Pluvinage wave function is used for the
ground state (thick solid lines in Fig. 1), agreement with
the absolute measurements [1] is quite good for all but
four of the 20 cases (�2 � 83�, 97�, 207�, and 221�). In
these four cases, the measured FDCS is significantly
smaller than theory for the larger theoretical peak. The
C4FS calculations [1] exhibit a similar relative discrep-
ancy with the shape of the measurements.

Berakdar [5,6] has presented a Faddeev-type approach
where, in lowest order, the four-body final state is a sum
of four 3C states — each corresponding to switching off
all interactions for one of the four particles. One of
Berakdar’s resulting four amplitudes corresponds to
FBA(3C) with a hydrogenic ground state. Using this
amplitude alone would overestimate the overall magni-
tude by about 50%. Thus, in Berakdar’s calculations
(thin solid lines in Fig. 1), agreement with the overall
magnitude is obtained as a result of interference be-
tween an FBA amplitude and three other three-body
amplitudes, all of which use a hydrogenic ground
state. Such interference is common in lowest-order im-
plementations of the Faddeev method and is known
lane for electron-impact double ionization of the ground state of
e ejected electrons are given by E2 � E3 � 10 eV. The incident
es for the ejected electrons are �2 and �3. The present FBA(3C)
solid lines. The absolute measurements (solid circles with error
available (�2 � 97�, 139�, 263�, 291�, 305�, and 319�), are
in solid lines).
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FIG. 2. Comparison of FBA(3C) calculations (solid lines)
with 6C calculations for electron (open circles) and positron
(plus signs) impact for the kinematics of Fig. 1.
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to produce unphysical results in the case of single ioniza-
tion [14,15].

To explore this issue further, we have implemented a
genuine four-body method where the final-state wave
function for the whole system (projectile plus target) is
approximated by a ‘‘6C’’ wave function that treats all six
two-body Coulomb interactions between the four par-
ticles exactly, albeit independently (and necessitates a
nine-dimensional numerical quadrature to compute Tfi).
This four-body product wave function (6C) is superior to
the sum of four three-body (3C) wave functions used by
Berakdar [5], for the reasons discussed by Briggs [14]. In
Fig. 2, our 6C calculations (numerically accurate to 5%)
for electron and positron impact are compared with the
FBA (the Pluvinage wave function is used for the ground
state). These calculations clearly support the validity of
the FBA — the 6C results closely follow the FBA curves
and the difference between electron and positron impact
is an order of magnitude smaller than predicted by
Berakdar [5].

Our FBA(3C) model is reasonable only for very fast
projectiles, since the projectile-target interaction is
073201-4
treated only to first order. In addition, our model will
not be valid if the sum of the energies of the two ejected
electrons is very low, since their motion is treated using
3C perturbation theory. Indeed, it may seem surprising
that our theory is reasonably accurate even for 10-eVejec-
ted electrons. A recent (e; 2e) study [16] showed that the
3C cross section has errors of �50% for 20-eV outgoing
electrons (54-eV collision energy, atomic hydrogen tar-
get). The reason why 3C is accurate for 10-eV ejected
electrons here, but not for 20-eV outgoing electrons in
the case of (e; 2e), is because initial-state projectile-target
interactions beyond first order (which are not included in
the 3C approximation) are negligible in the former case of
a 5599-eV projectile but important in the latter case of a
54-eV projectile.

In conclusion, we have presented a simple three-body
model for electron-impact double ionization of helium.
Like many of the previous FBA studies, we used the 3C
wave function to describe the final double-continuum
state of the atom. Unlike all previous (e; 3e) studies,
however, we used the Pluvinage wave function [8] for
the ground state. Consequently, electron-electron corre-
lation is treated precisely (and the cusp conditions of Kato
are satisfied exactly) by both our initial and final target
wave functions and we found that this is crucial for
reproducing the absolute measurements.
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