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Two-Loop Self-Energy Correction in High-Z Hydrogenlike Ions
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A complete evaluation of the two-loop self-energy diagrams to all orders in Z� is presented for the
ground state of H-like ions with Z � 40.
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FIG. 1. Two-loop self-energy diagrams. Double line indicates
an electron propagating in the Coulomb nuclear field. It is
understood that the corresponding mass counterterms are sub-
correction in the low-Z region. It was shown that for tracted from the diagrams.
The calculation of the two-loop self-energy correc-
tion to the Lamb shift is at present one of the most
challenging problems in bound-state QED. Until very
recently, this project has been addressed to mainly within
the Z�-expansion approach. In it, the two-loop self-
energy contribution is represented as an expansion over
Z� and ln�Z��,

F�Z�� � B40 � �Z��B50

� �Z��2�L3B63 � L2B62 � LB61 � B60� � � � � ;

(1)

where F�Z�� � 
E=�m��=
�2�Z��4�, L � ln�Z��	2.
Whereas the lowest-order term B40 has been known for
a long time, calculations of higher-order contributions
have not been accomplished until recently. The correction
B50 was found to be surprisingly large [1,2], B50 �
	24:27. This result has significantly changed the theo-
retical prediction for the Lamb shift in hydrogen and
resolved the disagreement with the experimental value
existing at that time. The leading logarithmic term B63

was derived first in [3] and later confirmed in [4,5]. (It
should be noted that the first evaluation [3], while yield-
ing the right result, is not completely correct, as will be
discussed below.) The two remaining logarithmic correc-
tions B62 and B61 have also been elaborated lately by
Pachucki [5]. Again, as in order �Z��5, the result obtained
turned out to be surprisingly large. The numerical value
of B61 is 49.8, which reverses the sign of the overall
logarithmic contribution for hydrogen. This indicates
that the convergence of the Z� expansion for the two-
loop self-energy correction is remarkably slow, and a
conclusion has been drawn in [5] that a numerical evalu-
ation with Dirac-Coulomb propagators is desirable even
for hydrogen.

The calculation of the two-loop self-energy diagrams
(Fig. 1) without an expansion in Z� started with the
irreducible contribution of the diagram (a) [known also
as the loop-after-loop (LAL) correction], which is by far
the simplest part of the total set. Such an evaluation was
first accomplished in [6] for high-Z ions, and later in [7]
for all ions, including hydrogen. The latter investigation
demonstrated a rather peculiar behavior of the LAL
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hydrogen its actual value was of a different sign and
magnitude than the value based on the first two terms of
the Z� expansion. In addition, a different result was found
in [7] for the leading logarithmic contribution B63 as
compared to the analytical evaluation [3]. (We note that
in the latter work the B63 term was evaluated for the
whole set of two-loop self-energy diagrams. However, it
was argued that it originated from the LAL contribution
only.) As a result, a question was raised in [7] about the
possibility that the Z� expansion for the two-loop self-
energy could be inadequate even for hydrogen. This
speculation attracted attention and several investigations
followed. The subsequent numerical calculation [8]
claimed to be compatible with the analytical result.
However, the third numerical evaluation by one of us
[9] confirmed the first result [7]. At the same time, the
total value of the B63 contribution was confirmed inde-
pendently by several groups, e.g., in [4]. To throw light on
this intricate situation, we performed [10] an analytic
calculation of the B63 term separately for the LAL cor-
rection and found agreement both with our previous nu-
merical result and with that of [7]. Our conclusion was
that the LAL correction provided an additional cubed
logarithmic contribution that had been omitted in the
original analytical calculation [3]. However, this addi-
tional term vanishes when the whole set of two-loop
self-energy diagrams is taken into account. Recently,
analogous additional terms were reported for the leading
logarithmic contribution for P states [11].

The evaluation of the remaining contributions in Fig. 1
is by far more difficult. These contributions are the re-
ducible part of the diagram (a), the overlapping diagram
(b), and the nested diagram (c). The first attempt to
evaluate them to all orders in Z� was made by
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FIG. 2. Diagrammatic representation of the M term. The
dashed line denotes the interaction with the Coulomb nuclear
field. 
ESE is the first-order self-energy correction.

FIG. 3. Diagrammatic representation of the P term. The last
part should be counted twice, accounting for two equivalent
terms.
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Mallampalli and Sapirstein [12]. In that work, the con-
tribution of interest was rearranged in three parts, re-
ferred to by the authors as the ‘‘M,’’ ‘‘P,’’ and ‘‘F’’ terms.
(We will discuss this separation in more detail below.)
Mallampalli and Sapirstein calculated only the M and F
terms, while the P term was left out since a new numeri-
cal technique had to be developed for its computation. In
addition, since the numerical procedure turned out to be
very time consuming, the actual calculation of the M
term was carried out only for two ions, uranium and
bismuth. Subsequently, in the investigation by two of us
[13], we accomplished the computation of the remaining
P term for Z � 83, 90, and 92, which formally completed
the calculation of the two-loop self-energy. However,
as we will see, the rearrangement of the whole correc-
tion into the M, P, and F terms is artificial since all three
are divergent. A proper treatment should include these
terms simultaneously. In addition, more than two points
(in Z) are needed in order to analyze the Z dependence of
the correction and to compare it with the known terms of
the Z� expansion. All these issues are addressed in the
present investigation.

Let us now turn to the evaluation of the two-loop self-
energy diagrams. The first problem to be solved is the
separation of ultraviolet (UV) divergences. The standard
method of renormalization in QED is developed for dia-
grams involving only free-electron propagators, treating
them in momentum space. Therefore, our strategy is to
subtract similar diagrams with electron propagators con-
taining zero or one interaction with the nuclear Coulomb
field in order to make the corresponding point-by-point
difference UV finite. The subtracted diagrams can be
then evaluated in momentum space or in the mixed
momentum-coordinate representation. For the first-order
self-energy, this approach was first implemented in [14].
The situation is much more difficult in the case of the
two-loop self-energy. Here, for the first time, we encoun-
ter the overlapping UV divergences. For example, the
diagram in Fig. 1(b) can be considered as consisting of
two overlapping vertex subdiagrams, each of which is UV
divergent. The presence of the overlapping divergences
makes the structure of subtraction terms much more
elaborate than that in the first order. Moreover, some of
these terms contain both bound-electron propagators
and UV-divergent subdiagrams. Such a situation had
never been encountered before, and a new numerical
technique had to be developed for the evaluation of these
subtraction terms.

Following [12], we rearrange the contribution of the
diagrams in Fig. 1 in four parts: the LAL part, the M, P,
and F terms. The LAL correction is defined by the
irreducible part of the diagram (a). Since its evaluation
is relatively easy and has been performed by several
groups, we do not discuss it here. The M term is diagram-
matically represented by Fig. 2. It consists of three parts
originating from the nested diagram, the overlapping
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diagram, and the reducible part of the diagram (a). The
subtractions in the M term are chosen so that each of these
three parts is separately UV finite. Next, we should ac-
count for the subtracted terms. Those that contain only
free-electron propagators can be treated in momentum
space using the standard Feynman-parametrization tech-
nique. For those that involve bound-electron propagators,
we introduce additional subtractions that remove the
overlapping UV divergences. This is graphically repre-
sented by Fig. 3. The corresponding contribution is re-
ferred to as the P term. It consists of three parts, each
containing only single UV-divergent subgraphs. Taking
the first part as an example, we see that the difference
shown in the figure is UV divergent only due to the inner
self-energy loop, while the divergence due to the outer
self-energy loop is canceled. Finally, we collect all terms
we have subtracted and denote them as the F term de-
picted in Fig. 4. It consists of Feynman diagrams that
contain free-electron propagators only.
073001-2



FIG. 4. Diagrammatic representation of the F term. The last
diagrams on the right in the first two rows should be counted
twice, accounting for two equivalent diagrams.

TABLE I. Individual contributions to the two-loop self-
energy correction expressed in terms of F�Z��.

Z LAL F term P term M term Total

40 	0:871 19.50 	30:13�15� 10.50(18) 	1:00�23�
50 	0:973 10.03 	14:42�7� 4.04(7) 	1:33�10�

10.02a

60 	1:082 5.72 	7:48�4� 1.21(2) 	1:63�4�
70 	1:216 3.497 	4:03�3� 	0:14�1� 	1:89�3�

	1:216b

83 	1:466 1.938 	1:831�13� 	0:990�5� 	2:349�14�
1.937a 	1:66�1�a

92 	1:734 1.276 	1:030�9� 	1:295�3� 	2:784�10�
	1:733b 1.274a 	1:855�7�a

100 	2:099 0.825 	0:635�6� 	1:473�3� 	3:382�7�
0.825a

aRef. [12]. bRef. [7].
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We should also mention the infrared (IR) reference-
state divergences that are present in the M and P terms.
These singularities can occur in bound-state QED calcu-
lations when energies of the intermediate states in the
spectral decomposition of electron propagators coincide
with the valence-state energy. An analysis given, e.g., in
[12] shows that the IR-divergent terms cancel each other
in the sum of the M and the P term. To sum up our
discussion of divergences, we separately write divergent
contributions to the terms under consideration:


EM � 
Ef
M 	
EIR; (2)


EP � 
Ef
P � 
EIR � L�1�
E�2��

SE ; (3)


EF � 
Ef
F � B�1�
E�2��

SE ; (4)

where the index f labels finite contributions, 
EIR is the
IR-divergent contribution, L�1� and B�1� are the one-loop
renormalization constants that fulfill the Ward identity
L�1� � 	B�1�, and 
E�2��

SE is the many-potential part of
the one-loop self-energy correction.

We now turn to the numerical evaluation of these
terms. It was carried out in the Feynman gauge. The P
term was evaluated along the lines described in detail in
our previous investigation [13]. The calculation of the F
and M terms was performed in a way, in many respects
similar to that of [12]. The details of the calculation will
be published elsewhere. Here, we focus on major novel
features of our evaluation as compared to [12]. The first
point is a different treatment of the reference-state IR
divergences. In [12], they were regulated by altering the
valence energy "a to ~""a � "a�1	 ��. The actual calcu-
lations were performed keeping a finite regulator �, and
the limit � ! 0 was evaluated numerically. According to
our experience, that approach, while being technically
easy to handle, does not allow one to control the accuracy
of the computation effectively. In our approach, we in-
troduce some subtractions in order to make the terms
under consideration finite, separating IR divergences in
the form 
EIR. The divergent contributions cancel each
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other explicitly in the sum, and we can perform the whole
computation without introducing any actual IR regulator.
However, in order to allow the term-by-term comparison
with the previous evaluation [12], we performed our
calculations with the regulator � as well.

The second new feature of our approach is a different
procedure employed for the double summation over the
partial waves in the M term. In [12], the photon angular
momenta l1 and l2 were chosen as independent expansion
parameters. We found it technically more convenient to
employ for this purpose the absolute values of the rela-
tivistic angular parameter � of two electron propagators,
j�j � j� 1=2. Thus, we turn the nested and overlapping
contributions to the M term into tables of values Xj�1j;j�2j

.
Next, we perform a resummation of the table: Xj�1j;j�2j

!
Yij, where i � k�1j 	 j�2k, j � �j�1j � j�2j 	 i�=2.
Finally, we sum up the table: First, we fix i and extrapo-
late the sum over j to infinity, and then sum over i and
estimate the tail of the expansion.

Now we discuss the computer time necessary for the
evaluation of the M term. In the previous evaluation by
Mallampalli and Sapirstein, a total time of 7323 h was
required for a given value of Z. In our numerical ap-
proach, the typical time of the evaluation of one element
X�1�2

is about 1 h for the IBM PWR3 processor with
350 MHz, both for the nested and the overlapping dia-
gram. The typical number of elements for a given Z was
440 for the nested diagram and 320 for the overlapping
diagram. This shows that the time consumption in our
numerical procedure is smaller than that of [12], although
it is still very large.

In Table I, we present the numerical results for indi-
vidual contributions to the two-loop self-energy correc-
tion. The table shows that our numerical values for the
LAL and F terms agree very well with the ones from
[7,12] but there is a significant deviation for the M term.
More specifically, our calculation for Z � 92 yields
073001-3
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FIG. 5. The results of our numerical evaluation to all orders
to Z� (dots) together with the first two terms of the Z�
expansion (solid line) and all known terms of the Z� expansion
(dashed line).
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	2:137, 4.679(2), and 	3:837�2� for the reducible,
nested, and overlapping contributions to the M term,
respectively. These results should be compared corre-
spondingly with 	2:137, 4.669(5), and 	4:387�5� from
[12]. We see that the leading source of discrepancy is the
overlapping diagram. Taking into account the complexity
of the computation, it is difficult to suppose what the
reason for this disagreement could be.

As in the case of the one-loop self-energy, the evalu-
ation becomes problematic very fast as Z decreases. It is
due in part to the fact that some individual contributions
exhibit a nearly Z-independent behavior, while the total
correction scales as �Z��4. Numerical problems restricted
our calculation to the region Z � 40. In Fig. 5, we com-
pare our nonperturbative results with the known terms of
the Z� expansion. Although we cannot as yet say any-
thing conclusive about the higher-order terms, the figure
suggests that the results obtained by two different meth-
ods could be compatible.

In summary, we have evaluated all contributions to
the two-loop self-energy correction for H-like ions with
Z � 40. As this correction has been the major source of
the uncertainty of theoretical values for the ground-state
Lamb shift in these systems, our evaluation improves
their accuracy by an order of magnitude [13]. While the
experimental precision for H-like uranium is not pres-
ently sufficient to probe the new contribution, this should
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become possible when the experiment currently planned
at Gesellschaft für Schwerionenforschung (Germany)
[15] is completed. The question of utmost importance is
to extend the present evaluation to low-Z ions, where
higher-order terms could enter at the level of experimen-
tal interest even at Z � 1 [5], as well as to excited states.
For the 2p1=2-2s transition in Li-like high-Z ions, the
two-loop self-energy presently defines the uncertainty
of the theoretical prediction [13] and can be probed by
comparing with available experimental data.
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