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Atom-Molecule Laser Fed by Stimulated Three-Body Recombination
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Using three-body recombination as the underlying process, we propose a method of coherently
driving an atomic Bose-Einstein condensate (BEC) into a molecular BEC. Superradiantlike stimulation
favors atom-to-molecule transitions when two atomic BECs collide at a resonant kinetic energy, the
result being two molecular BEC clouds moving with well-defined velocities. Potential applications
include the construction of a molecule laser.
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FIG. 1. Schematic diagram of the four possible states of the
atoms: Atomic states with momenta �hk1 and �hk2 have popu-
through three-body recombination is usually character-
lations n1 and n2; molecular (molecular mass 2m) states with
momenta �hkm1 and �hkm2 have populations nm1 and nm2.
One of the major goals of the recent research in Bose-
Einstein condensate (BEC) physics is the creation of a
molecular condensate [1]. Many applications are envi-
sioned for such a system, including coherent quantum
chemistry [2]. One approach to forming a molecular
BEC utilizes an atomic condensate along with a method
of coherently driving pairs of atoms into (bound) molecu-
lar states. Two mechanisms have been proposed for this:
(i) photoassociation, in which an external laser couples
atomic states to molecular states [3], and (ii) control of
the scattering length via external magnetic field ramps
tuned near a Feshbach resonance [4]. Another problem of
interest to the BEC community is the realization of an
atom laser [5]. A proposed technique [6] for this is the
application of a time-dependent light pulse resulting in
Bragg scattering of the condensate cloud, in which a
fraction of the condensate receives a large momentum
kick and attains velocity relative to the parent cloud.

In this Letter, we propose a new mechanism for the
formation of a molecular BEC from an atomic BEC. This
mechanism relies on a twofold bosonic stimulation of the
three-body recombination process — both by the number
of atoms present and by the number of molecules. We
show that two atomic condensates with a well-defined
(resonant) relative velocity will mutually stimulate tran-
sitions into molecular states, resulting in the production
of two coherent molecular clouds, each with a well-de-
fined momentum.

Consider first the elementary process involving only
three isolated atoms. The atoms, initially in an unbound
state, are converted through recombination into a bound
molecular state with 1=3 of the recoil energy, while a
third atom carries away the remaining 2=3. Conservation
of momentum requires that the resulting atom and mole-
cule have momenta of equal magnitude ( �hk0), but in
opposite directions. The value of k0 is fixed by conserva-
tion of energy to be k0 �

����������������������
4mE0=3 �h2

p
, where E0 is the

molecular binding energy and m is the atomic mass. This
process is characterized by a transition matrix element Tif
between the initial and final three-body states. The spon-
taneous decay of an ultracold atomic sample of density n
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ized by a loss rate coefficient K3, such that dn=dt �
�3K3n

3=6. Here n3=6 is the number of atomic triplets
available for recombination in the considered volume and
the factor of 3 denotes the atoms lost in each recombina-
tion. An additional factor of 1=6 multiplies the right-hand
side if all three atoms share the same state, i.e., if we
consider the decay of a pure condensate [7]. The connec-
tion between Tif and K3 is given by [8]

K3 �
6= �h

�2
�2

Z d3k
dE

jTifj2�
�
E�

3 �h2k20
4m

�
dE�

6k0m

�h3
jTifj2:

If the recombination forms a weakly bound level with
E0 � �h2=�ma2�, then k0 � 2=�

���
3

p
a�, where a is the s-wave

scattering length. In this case, working in the ultracold
limit and using momentum normalized states, Ref. [8]
obtains Tif � � �h2a5=2=m [8], where � is a numerical
constant. More generally K3 has been shown to scale
with the fourth power of the scattering length in most
cases, K3 � �� �h=m� a4 [9,10] which for the weakly
bound level gives � � �12�2�=�


���
3

p
�. Reference [8] finds

� � 23, while a more rigorous calculation, valid for a
wide range of interatomic potentials [9], yields � � 180
for a > 0 and � � 1000 for a < 0. (We replace a sin2

modulation factor discussed in [9,10] by 1=2.)
We are interested in the process in which three-body

recombination is stimulated by bosonic enhancement. We
consider two atomic condensate clouds moving with rela-
tive velocity �hk0=m, and choose a reference frame in
which the two clouds move with equal velocities towards
each other (see Fig. 1) along the direction k̂k. Let the wave
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vector of the atoms moving to the right (left) be denoted
by k1 (k2) and the population of the mode by n1 (n2). Note
that k1 � �k2 � k0=2k̂k. Recombination of three atoms
with momentum �hk1 can lead to a final state in which the
resulting atom has momentum �hk2, in which case the
resulting molecule has the momentum �hkm1 � 2 �hk0k̂k.
This transition will be strongly favored due to bosonic
stimulation if the mode k2 is highly populated. We recall
the fact that the magnitude of the momentum is fixed by
energy and momentum conservation and only its direc-
tion has an arbitrary value. Therefore, it is possible that
the atom-molecule pair is ejected along a direction differ-
ent from k̂k. However, this process does not benefit from
bosonic stimulation. By symmetry, recombination of
three atoms with momentum �hk2 will be strongly en-
hanced if the resulting atom-molecule pair is ejected
along the direction k̂k. In this case, the momentum of
the molecule has the value �hkm2 � �2 �hk0k̂k while the
resulting atom has momentum �hk1. We denote the num-
bers of molecules with wave vectors km1 and km2 by nm1

and nm2, respectively. Finally, note that for any three-
body recombination the reverse process is also possible.
For example, an atom with momentum �hk2 that collides
with a molecule with momentum �hkm1 can induce it to
break up, resulting in three atoms with momentum �hk1.
In summary, the four modes considered here are coupled
by the transitions

3A�k1� � A�k2� 	 A2�km1�;

3A�k2� � A�k1� 	 A2�km2�:
(1)

The many-body interaction Hamiltonian describing
the reactions in Eqs. (1) is

ĤH i � �h!�cy2c
y
m1c1c1c1 	 cy1c

y
m2c2c2c2� 	 H:c: (2)

Here c1;2 (cm1;m2) are the annihilation operators for the
two atomic (molecular) modes and the coupling fre-
quency is given by �h! � Tif=V

3=2, where V is the quan-
tization volume. For a weakly bound molecule
! � �� �h=�ma2���a3=V�3=2. The two operators,

N̂N � cy1c1 	 cy2c2 	 2cym1cm1 	 2cym2cm2;

P̂P
� �hk0=2�

� cy1c1 � cy2c2 	 4cym1cm1 � 4cym2cm2;

commute with the Hamiltonian in Eq. (3) as a conse-
quence of the conservation of the total number of atoms
and of the total momentum.

We now derive the equations of motion for the creation
and annihilation operators in the Heisenberg representa-
tion. Adopting the notation a1;2��� and b1;2��� for the
atomic and molecular Heisenberg operators divided by����
N

p
(in which fast oscillations with the frequency asso-

ciated to the noninteracting energy were factored out), the
equations of motion read
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i
d
d�
a1 � 3ay1a

y
1b1a2 	 by2a2a2a2; (3)

i
d
d�
a2 � 3ay2a

y
2b2a1 	 by1a1a1a1; (4)

i
d
d�
b1 � ay2a1a1a1; (5)

i
d
d�
b2 � ay1a2a2a2: (6)

We use a scaled time � � �t with � � N3=2! �
n3=2Tif (n � N=V is the total concentration of atoms).
For a shallow molecular level � � �� �h=�ma2���na3�3=2.
Equations (3)–(6) describe the dynamic population trans-
fer between the atomic and molecular modes due to
resonant three-body recombination. They are based on
the assumption that all two-body elastic collisions (atom-
atom, molecule-molecule, and atom-molecule) and also
collisional loss of the weakly bound molecules to deeper
molecular states can be neglected. In addition, we have
neglected the spatial and temporal changes of the slowly
varying envelopes of the condensate clouds. The simplest
approximation to the above equation consists of replacing
the operators by complex numbers equal to their averages:
~aa1;2�t� � ha1;2�t�i and ~bb1;2�t� � hb1;2�t�i, i.e., the classical
field approximation. The resulting system of ordinary
differential equations, with initial conditions, can be
integrated numerically. We consider the experimentally
relevant case of an initial state with zero molecules.
We also assume that initially the N atoms are evenly
split between the two momentum eigenstates: N1;2�
n1;2�t�0��N=2. Assuming real initial conditions, we
set ~bb1;2�0� � 0 and ~aa1;2�0� � 1=

���
2

p
. The approximate ver-

sion of the system of Eqs. (3)–(6) can be solved to
describe the population transfer from the atomic to the
molecular modes in a process characterized by the time
constant TR � 2
=�. A characteristic that is similar to
the superradiance phenomenon is double amplification
(stimulation): After an initial buildup period for the
molecular population, rates of further transitions are
proportional both to the number of existing molecules
in the recombined momentum state and to the number of
atoms in their relevant momentum state.

The question of the validity of using the classical field
approximation can be studied in general by accounting for
higher-order terms in a cluster expansion of the four-
operator products in Eqs. (3)–(6) (see, e.g., Ref. [11]).
However, it is sufficient for our purpose to compare the
results of the approximate version of Eqs. (3)–(6) to the
many-body Schrödinger equation written using a basis of
Fock states. We designate these basis states by
jn1; n2; nm1; nm2i, where n1;2 (nm1;m;2) are the occupation
numbers of the two atomic (molecular) modes. Because of
the two conservation laws n1 � N1 	 nm2 � 3nm1 and
n2 � N2 	 nm1 � 3nm2, we can restrict the basis set to
only those accessible by three-body recombinations
from our initial state and thus use only two occupation
070404-2
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numbers, for example nm1 and nm2, to parametrize the Fock states. With this notation, the many-body wave function is

j��t�i �
X

nm1;nm2

fnm1;nm2
�t�jnm1; nm2i: (7)

After eliminating the fast oscillations and introducing the time scaling �0 � !t, the Schrödinger equation becomes

i
d
d�0

fnm1;nm2
�

����������������������������������������������������������������
�n1 	 1��n1 	 2��n1 	 3�n2nm1

p
fnm1�1;nm2

	
�����������������������������������������������������������������������������
n1�n1 � 1��n1 � 2��n2 	 1��nm1 	 1�

p
fnm1	1;nm2

	
����������������������������������������������������������������
�n2 	 1��n2 	 2��n2 	 3�n1nm2

p
fnm1;nm2�1 	

�����������������������������������������������������������������������������
n2�n2 � 1��n2 � 2��n1 	 1��nm2 	 1�

p
fnm1;nm2	1: (8)
Solving these equations with the initial conditions
f0;0�0� � 1 and fnm1;nm2

�0� � 0 for nm1 � 0 and nm2 � 0
allows us to calculate the average numbers of atoms
populating any of the four considered modes. These aver-
ages are shown in Fig. 2 for different values of N1 �
N2 � N=2. Comparison with the corresponding results
obtained using Eqs. (3)–(6) shows agreement over the
initial period of fast transitions of atoms into molecular
states. As expected, the classical field approximation fails
at shorter times for lower values of N, while for suffi-
ciently large N it can be used to accurately describe the
initial transition burst converting atoms to molecules.
Equation (8) allows us to describe the population transfer
within the four-mode approximation without making any
additional approximations. However, calculations using
the Fock basis become prohibitive if more than a few
thousand atoms are considered.

Experimental arrangements that use the process de-
scribed above to produce coherent molecular clouds can
be readily envisioned. The simplest experiment would
begin with a time-dependent Bragg splitting of a single
atomic cloud as in the experiment of Kozuma et al. [6],
but with the particular choice of momentum kick that
matches the three-body resonance condition. In addition,
the value of the molecular binding energy can be tuned
using an external magnetic field [12,13]. In order to take
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FIG. 2. Comparison of the scaled-time-dependent average
number of atoms (solid lines) and molecules (dotted lines),
obtained in two ways: by solution of the approximate
Heisenberg equations (thick lines) and by solution of the
many-body Schrödinger equation (thin lines). The three panels
correspond to different total numbers of atoms N: top N � 64;
middle N � 640; bottom N � 6400.
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full advantage of the stimulated transition into molecular
states (i.e., to transform a large fraction of the atomic
clouds into molecular clouds), the collision time of the
two atomic clouds should be comparable to the character-
istic time of the three-body recombination process tcoll �
TR. Here tcoll � Rc=� �hk0=m� and Rc is the characteristic
size of the condensate along the collision direction.
Consider a sample of 85Rb with a concentration of
1015=cm3. Assuming that the scattering length is adjusted
with the help of a Feshbach resonance to a � 400 a:u: and
that E0 � �h2=ma2, then we estimate TR � 0:45 ms (using
K3 given by [9]). The resonant process described here is
characterized by a finite width if additional processes that
limit the lifetime of the involved states are considered.
One such process is the collisionally induced decay of the
molecular level to lower molecular states. Only a very
rough estimation of the lifetime is available for mole-
cules formed by atomic species commonly used in BEC
experiments. Some estimations (see, e.g, [4]) cite values
of at least 1 ms for this lifetime at molecular densities of
1015=cm3. In addition, recent experiments in 85Rb [13]
suggest that this is a conservative estimation, and that the
actual lifetime might be somehow longer.

Until this point, we have neglected elastic collisions
between atoms and molecules. In fact, if the resonant
value of the relative velocity is not enforced by the
experimental setup, depletion of the atomic clouds by
elastic atom-atom scattering is the main loss process
taking place before the two condensate clouds separate
[14]. As discussed in Ref. [14], elastic scattering must be
accounted for beyond the mean-field (i.e., Gross-
Pitaevskii) approximation in order to observe the con-
densate depletion due to elastic scattering.We can include
this process in our simple model as a loss term in the
interaction Hamiltonian. Considering only atom-atom
collisions involving one atom with wave vector k1 and
one with k2, Eqs. (3) and (4) in the classical field ap-
proximation become

i
d
d�

~aa1 � 3~aa�1~aa
�
1
~bb1~aa2 	 ~bb�2~aa2~aa2~aa2 � i j~aa2j2~aa1;

i
d
d�

~aa2 � 3~aa�2~aa
�
2
~bb2~aa1 	 ~bb�1~aa1~aa1~aa1 � i j~aa1j

2~aa2:

(9)

Here the parameter  is the elastic scattering rate con-
stant divided by 2 �h�, and is given by  � � �hk0=m�!n=
�2 �h�� [14], where ! is the elastic scattering cross section
070404-3
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at the relevant two-body collision energy Ecoll � �h2k20=m.
Equations (9) show that the two processes — resonant
three-body recombination and condensate loss due to
elastic scattering — compete with each other and that
the value of the parameter  is crucial in determining
which process dominates. Figure 3 shows the solution of
the Heisenberg equations that include the elastic loss
terms for two extreme cases. The example with  � 0:1
illustrates the case of little elastic loss allowing almost
70% of the atoms to be transformed into molecules if
tcoll � TR. However, if  � 1:5, for the same collision
time more than 80% of the atoms are lost due to elastic
collisions and only about 8% end up in the molecu-
lar clouds.

The simplest estimation of  can be attempted in the
low energy limit (k0 � a�1) where ! � 8
a2. This leads
to  � �8
=

���
3

p
���na3��1=2 and yields high values of  

even for very large values of the diluteness parameter
(i.e., na3 � 1 corresponds to  � 1:5). However, note the
importance of using an exact value of ! corresponding to
the correct Ecoll. For example, in the case of a weakly
bound molecular level [E0 � �h2=�ma2�], k0 � 1=a, which
is beyond the validity of the low energy approximation.
Apparently, changing the value of the parameter na3 by
changing either n or a is the primary way of shifting the
balance between the two processes. However, special con-
ditions might enhance or suppress either process. One
such situation may occur when a approaches zero and
therefore elastic scattering vanishes while three-body re-
combination still has a considerable probability. Calcu-
lations by Esry et al. [9] predict a significantK3 for a � 0.
Similarly, Stenger et al. [15] measured three-body re-
combination loss from Na condensates in the vicinity of
Feshbach resonances, observing a large amount of loss
even at small values of a. Consider the Feshbach reso-
nance located near B � 535:7 G in 85Rb. Tuning the
magnetic field such that a � 0 (B � 537:6 G) leads to
E0 � 75 #K and, for a density of 1016=cm3, we obtain
K3�5:4�10�32 cm6=s (as estimated in Ref. [9]), giving
TR�28ms. Alternatively, one can choose the experimen-
tal conditions such that the elastic collisions are strongly
070404-4
suppressed exactly at the resonant value of the collision
energy Ecoll due to the presence of a Ramsauer mini-
mum (see, for example, [16]). The exact resonant match-
ing between the position of the Ramsauer minimum and
that of the binding energy of the molecular state (i.e.,
Ecoll � E0=3) can be achieved near some Feshbach
resonances. For the above-mentioned resonance in 85Rb,
this matching occurs for B � 547 G, when a �
�353 a:u:, and E0 � 1:05 mK. In this case, considering
n � 1015=cm3, one finds TR � 1:3 ms (K3 � 9:2 �

10�26 cm6=s cf. [9]). Since producing an atomic conden-
sate at negative amight be a problem, we assume here that
it is produced at some positive a and that the magnetic
field is swept into resonance precisely when the two
atomic clouds start colliding.

In conclusion, resonant three-body recombination that
benefits from the superradiantlike bosonic stimulation
could be a promising candidate for producing coherent
samples of molecules from existing atomic condensates.
The simplest experimental setup that takes advantage of
this process involves a collision of two atomic conden-
sates, which produces two molecular condensates in coun-
terpropagating momentum eigenstates. This setup could
be particularly promising for the construction of a mole-
cule laser by colliding two atomic condensates.
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