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Fermi Gases in Slowly Rotating Traps: Superfluid versus Collisional Hydrodynamics
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The dynamic behavior of a Fermi gas confined in a deformed trap rotating at low angular velocity is
investigated in the framework of hydrodynamic theory. The differences exhibited by a normal gas in
the collisional regime and a superfluid are discussed. Special emphasis is given to the collective
oscillations excited when the deformation of the rotating trap is suddenly removed or when the rotation
is suddenly stopped. The presence of vorticity in the normal phase is shown to give rise to precession and
beating phenomena which are absent in the superfluid phase.
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Recent experiments on ultracold atomic Fermi gases
close to a Feshbach resonance [1-3] have explicitly re-
vealed the emergence of a hydrodynamic regime which
shows up in the anisotropic shape of the expanding gas.
This behavior is the consequence of the anisotropy of the
pressure gradients which are stronger in the tighter direc-
tions of the trap. It should be contrasted with the isotropic
nature of the expansion of the noninteracting Fermi gas,
which instead reflects the initial isotropy of the momen-
tum distribution. In Ref. [4] the anisotropy of the expan-
sion of a Fermi gas has been suggested as a possible
signature of superfluidity. The analysis of Ref. [4] con-
cerns, however, dilute gases far from Feshbach reso-
nances where the system, in the normal phase, is
collisionless at low temperature due to Pauli blocking
[5] and consequently expands differently from a super-
fluid. If one instead works close to a Feshbach resonance,
the huge increase of the collisional rate will favor the
achievement of the hydrodynamic regime in the normal
phase even at low temperature [1]. At the same time the
resonance effect is expected to enhance significantly the
value of the critical temperature for superfluidity [6],
providing promising perspectives for its experimental
realization. Since the anisotropy of the expansion is com-
patible with either the collisional or superfluid hydrody-
namic pictures, its experimental observation cannot be
used as a test of superfluidity without further considera-
tions. As a consequence, it is important to identify alter-
native effects which permit one to distinguish between
the two regimes.

The purpose of this Letter is to show that the study of
the collective oscillations of a trapped Fermi gas rotat-
ing at low angular velocity can provide a useful identi-
fication of superfluidity. It is, in fact, well known that a
superfluid cannot support vorticity, unless quantized vor-
tices are created. In the following we will consider situ-
ations where vortices are absent. This can be ensured by
rotating the confining trap at sufficiently low angular
velocities. Under these conditions the dynamic behavior
of a superfluid is described by the equations of irrota-
tional hydrodynamics:
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where V., is the external potential generated by the
confining trap, while P and u are, respectively, the pres-
sure and the chemical potential of a uniform gas evalu-
ated at the corresponding density. In the last identity we
have used the T'= 0 thermodynamic relationship VP =
nV . The above equations apply to dynamic phenomena
of macroscopic type where the local density approxi-
mation to the equation of state is justified. They hold for
both Bose and Fermi superfluids at zero temperature. At
finite temperature, below T, they should be generalized
to the equations of two fluid hydrodynamics (see, for
example, [7]). Equations (1) and (2) have been systemati-
cally used in the last few years to test the effects of
superfluidity on the dynamic behavior of Bose-Einstein
condensed gases [8].

Differently from a superfluid, a normal gas can support
vorticity and in the collisional regime the equation for
the velocity field takes the classical Euler form

2
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where the time dependence of the pressure should be
calculated taking into account the conditions of adia-
baticity, following from the conservation of entropy.
Equation (3) differs from Eq. (2) for the superfluid ve-
locity because of the last term, proportional to the vor-
ticity V A v. The hydrodynamic description (3) holds
provided the collisional relaxation time 7 is much smaller
than the inverse of the typical frequencies w characteriz-
ing the dynamic phenomena under investigation, fixed by
the oscillator trapping frequencies: w7 < 1.

Let us first suppose that the initial state of the system
does not contain any velocity flow (gas at rest in a static
trap). In this case the equations for the expansion as
well as for the linearized collective oscillations take
the same irrotational form both in the superfluid and
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classical cases. In the following we will assume
a trapping potential of harmonic shape: V. =
M(wix* + wiy* + w?z?)/2. If the potential is axially
symmetric (w, = w, = w ), one can classify the solu-
tions for the linearized oscillations in terms of the third
component iim of angular momentum. We will consider
solutions where the velocity field is linear in the spatial
coordinates. The solutions with m = *2 and m = =1 are
surface excitations of the form v = V(x = iy)? and v «
V[(x = iy)z] respectively, with frequencies given by

wm= *2)= \/Ea)l, “4)
w(m = *1) =4/} + w2, (5)

independent of the equation of state. Assuming a power
law dependence for the isoentropic equation of state
(P « n¥*1), one easily finds analytic solutions also for
the m = 0 modes which are characterized by a velocity
field of the form w « V[a(x* + y?) + bz*]. The corre-
sponding collective frequencies are given by

w*(m=0)=2(y + Dol + (y +2w? = \/4(7 + 1?0t +(y + 202w +4(y* =3y - 2)0} w? ]

Equation (6) reduces to the one derived in Ref. [9] in the
interacting Bose case (v = 1), while in the case of the
ideal gas (y = 2/3) it reduces to the predictions of
Refs. [10-12] and, for spherical trapping, to the ones
of Refs. [13]. For elongated traps (w, < w, ) one finds
o=2y+ 1w, andw =By +2)/(y + 1) w,.
The analysis of the collective frequencies is easily gen-
eralized to triaxial anisotropy (w, # w, # w_), where
one finds three solutions of the form v o« V(xy), v «
V(xz), v« V(yz). These are the so-called scissors
modes [14] relative to the three pairs of axes, with

frequencies \/wﬁ + w?, \/w,% +w?, and /ol + w2, re-

spectively. The other three solutions have the form v«
V(ax’+by*>+cz?) and their frequencies obey the
equation

0’ = 2+ )0} + 0l + 0ot +
4(y + D(wiw; + 0io? + ojel)w’ —

42 + 3y)winie? =0. (7)

Let us stress again that the above results hold both in
the superfluid and normal hydrodynamic phases. In par-
ticular, if we excite the scissors mode by suddenly rotat-
ing the confining trap starting from the ground state
configuration, like in the experiment of Ref. [15], the
gas will oscillate with the same frequency in both re-
gimes. The situation would be different in a dilute Fermi
gas far from Feshbach resonances where the dynamic
response, in the normal phase, is collisionless at low
temperature and the behavior of the scissors oscillation
exhibits different features with respect to the superfluid
case [14,16]. Although in a Fermi gas close to a Feshbach
resonance the measurement of the collective frequencies
(4)—(7) around the ground state does not provide a direct
indication of superfluidity, their experimental determina-
tion would be nevertheless very useful, providing an
accurate and quantitative proof of the achievement of
the hydrodynamic regime. This is best tested looking at
the surface excitations, whose frequencies are insensitive
to the equation of state.

We are now ready to explore the rotational properties of
the system. The most natural procedure is to let a de-
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formed trap rotate at angular velocity () in the x-y
plane. The angular velocity should be turned on adiabati-
cally in order to ensure the conditions of stationarity.
Furthermore, the final angular velocity () should be small
enough to avoid the formation of quantized vortices in the
superfluid phase. This condition is not very restrictive
since the angular velocity needed to nucleate vortices
by adiabatic increase of the rotation rate is very high
[17], as confirmed experimentally in the case of Bose-
Einstein condensates [18].

If the system is superfluid, the stationary velocity field
has the irrotational form v = aV(xy). The dependence of
the coefficient @ on the angular velocity () has been
discussed in Ref. [19] and for small angular velocities
reduces to & = —€(), where € = (w? — @?)/(w? + w?)
is the deformation of the trap in the x-y plane. Actually, in
the limit of an axisymmetric trap (e = 0), the velocity
field exactly vanishes revealing that the superfluid is not
capable to rotate. If, instead, the system is normal, the
stationary velocity field takes the rigid form v = Q A r,
corresponding to V A v = 2. Notice that, while the
rigid rotation is correctly described by the hydrodynamic
Egs. (1) and (3), the thermalization process, which per-
mits its achievement starting from a gas initially at rest, is
not accounted for by Eq. (3), because of the absence of
viscosity terms. The time needed to achieve the rigid
rotation of the gas (spin-up time) was calculated in
Ref. [20], and in the hydrodynamic regime w7 < 1 is
of the order of (e?w? 7)~!, where 7 is the relaxation time
fixed by collisions and ] = (w} + w3)/2. This suggests
that, in order to reach steady rigid rotation in reasonable
times, the system should not be too deeply in the hydro-
dynamic regime and at the same time the deformation of
the rotating trap should not be too small [21].

The fact that the velocity field is so different in the two
regimes, gives rise to different predictions for the fre-
quencies of the collective oscillations. For an axisymmet-
ric trap the differences become particularly clear. In fact,
while an axisymmetric superfluid cannot rotate and the
frequencies of the m = £2 quadrupole oscillations are
given by Eq. (4), in the collisional hydrodynamic case the
degeneracy of these modes is lifted by the presence of the
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rigid rotation according to the law [22]:

w(m = *2)=,20% — Q>+ Q. (8)

Equation (8) is consistent with the sum rule approach
developed in Ref. [23], yielding the result

2 ()

Aw = wm=+2) — w(m= -2) =~ e

©))
for the splitting of the m = £2 quadrupole frequencies,
where (/) is the angular momentum per particle. In the
case of a superfluid no angular momentum is carried by
the system because of the irrotationality constraint, while
in the collisional hydrodynamic regime the angular mo-
mentum is given by the rigid value {/.) = MQ{(x? + y?)
and hence Aw = 2 (). Measuring the splitting Aw then
provides an efficient way to detect the vorticity of the
gas. The splitting can be measured by suddenly switch-
ing off the deformation of the trap. Immediately after,
the system will feel the axisymmetric trap V., =
M[w? (x* + y?) + ®2z%]/2, but will no longer be in equi-
librium. Actually, in linear approximation the state of the
system can be written in the form [0) + a,|m = +2) +
a_|m = —2), where |0) is the new equilibrium state,
while |m = *2) are the m = =2 quadrupole states
with excitation energies fiw+~ = w(m = *=2). The coeffi-
cients a are fixed by the initial conditions, including the
quadrupole deformation and the angular velocity (). One
finds a, +a_ ={*>—y*)/\Jo and a,w, —a_w_ =
2 Qx> — y?)/Jo, where o is the quadrupole strength
[23]. The time evolution of the states |m = *2) is fixed
by the frequencies w+ and a simple calculation yields
the result

by tan(Awt/2) + b_ tan(wt)
b, — b_tan(wyt) tan(Awt/2)’

tan(20) = (10

where 6 is the angle of the principal axis of the gas in the
x-y plane, wgp = (0, + @_)/2, and b =a, *a_. In
the superfluid case Aw =0, and one finds the result
tan(260) = (2Q)/wy) tan(wy1). In the collisional hydrody-
namic case, the angle 6 exhibits an additional slow pre-
cession. This is best seen by taking stroboscopic images at
times t = wn/ w, with n integer, at which the deforma-
tion of the atomic cloud is maximum. For such times
tan(wot) = 0 and the angle 6, modulus 77/2, follows the
precession law 6§ = Awt/4. This precession is caused by
the splitting Aw = 2() and is absent in the superfluid
case. The numerical solution of the hydrodynamic equa-
tions confirms (see Fig. 1) the accuracy of the prediction
(10), based on linear approximation. In the numerical
calculation we have chosen the value y = 2/3 character-
izing the equation of state of an ideal gas, including the
most relevant case of a degenerate Fermi gas. The results
are not, however, sensitive to the value of vy, consistent
with Eq. (10), unless large values of € are considered. The
proposed experiment is similar to the one used in [24] to
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FIG. 1. Time evolution of the angle # (measured in radians

and plotted modulus 7/2) after the sudden switching off of the
trap deformation. (a) Superfluid hydrodynamics; (b) collisional
hydrodynamics. The trap parameters are € = 0.2, ) = 0.2w |,
w./w,; = 0.1, while y = 2/3. The dashed line in (b) is the
curve 6 = Qt/2 (see text).

measure the angular momentum of quantized vortices. In
that experiment the deformation of the gas was produced
by suddenly switching on a laser field in an almost
axisymmetric Bose-Einstein condensate. This corre-
sponds to setting a, = a_ (b_ = 0) and Eq. (10) reduces
to 0 = Awt/4.

If instead of switching off the deformation we simply
stop the rotation of the deformed trap, another interesting
phenomenon takes place that is worth discussing. In fact,
the gas, due to its inertia, will first continue rotating, but
will soon feel the restoring force produced by the de-
formed confining potential, generating an oscillation
around the new equilibrium configuration. In the super-
fluid this procedure will excite the usual scissors mode
with frequency v2 w . In the case of classical hydro-
dynamics, the gas will instead oscillate differently.
Actually a remarkable property exhibited by Egs. (1)
and (3) of classical hydrodynamics is that they admit sta-
tionary solutions with nonvanishing velocity flow also
when the trap is at rest in the laboratory frame. These
solutions have the form [22] v = Q A r + aV(xy) and for
small ) one finds @ = €Q). Under the condition () >
€’w |, the resulting oscillation can still be described as a
linear combination of the two modes (8) and will consist
of the characteristic beating [25]

6(1) = (Q/wy) sin(wt) cos(Awt/2). (11)

Under the same conditions, the intrinsic deformation 6 of
the cloud also exhibits an oscillatory behavior described
by the law 6(¢) — 6y = —(2Q2€/wy)sin(wyt)sin(Awt/2),
where 8, = (y*> — x?)/{x* + y?) = €is the deformation of
the stationary configuration. In Fig. 2 we compare the
behavior of the angle 6 in the superfluid and normal cases.
The numerical results have been obtained by solving the
hydrodynamic equations and in the collisional case ex-
hibit the typical beating predicted by Eq. (11).
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FIG. 2. Time evolution of the angle § (measured in degrees)
after the sudden stop of the rotation of the trap. (a) Superfluid
hydrodynamics; (b) collisional hydrodynamics. Parameters as
in Fig. 1.

Let us finally recall that the differences between the
superfluid and collisional regimes discussed in this Letter
concern genuine macroscopic phenomena. The theory of
superfluidity predicts also the occurrence of more micro-
scopic quantum phenomena, associated with the quanti-
zation of circulation and the appearance of quantized
vortices. The description of quantized vortices requires
theoretical schemes beyond the hydrodynamic picture
and has been the object of recent work in Fermi super-
fluids in various regimes, including the BCS [26] and the
unitarity limit [27]. Their observation, similar to the case
of Bose-Einstein condensates [24], could again be re-
vealed by the splitting (9) of the quadrupole frequencies.
In a Fermi superfluid, one predicts (/,) = 7/2 for a single
vortex line aligned along the symmetry axis [28]. The
realization of quantized vortices, however, requires dif-
ferent procedures with respect to the ones discussed in
this Letter. In particular, one should work at higher an-
gular velocity, close to w | //2 where the superfluid be-
comes unstable against the formation of quadrupole
deformations [19,29]. Furthermore, one should switch
on the rotation of the trap in a nonadiabatic way in order
to favor their nucleation. This procedure has already
proven to be successful in the experimental realization
of quantized vortices in Bose-Einstein condensates [30].

Stimulating discussions with L.P.  Pitaevskii are
acknowledged.
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