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Time-Reversal Symmetry-Breaking Superconductivity in Heavy-Fermion PrOs4Sb12
Detected by Muon-Spin Relaxation
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We report on muon-spin relaxation measurements of the 4f2-based heavy-fermion superconductor
filled-skutterudite PrOs4Sb12. The results reveal the spontaneous appearance of static internal magnetic
fields below the superconducting transition temperature, providing unambiguous evidence for the
breaking of time-reversal symmetry in the superconducting state. A discussion is made on which of the
spin or orbital component of Cooper pairs carries a nonzero momentum.
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fact strongly indicates that quantum quadrupole fluctua-
tions of the Pr ions play an important role in realizing

UBe13, the possibility of a magnetic phase coexisting
with the SC state cannot be ruled out [19] and, on an
Many unconventional superconducting (SC) states, as
in Ce- and U-based heavy-fermion (HF) compounds or
high-Tc cuprates, appear in close proximity to magnetic
instabilities when a certain parameter (pressure, atomic
doping, or oxygen content) is varied [1–3]. This fact
strongly suggests that the attractive interactions binding
electrons into Cooper pairs are mediated by magnetic
moment fluctuations. As another possible pairing glue,
fluctuations of quadrupole moments — distorted shapes
of the electronic clouds of ions, are theoretically consid-
ered to be possible [4,5]. An interesting question to be
addressed is what is the nature of superconductivity in
such a system. For this study, Pr-based compounds with a
4f2 configuration are likely candidates, since nonmag-
netic but quadrupolar active low-energy levels can be
realized due to the crystalline-electric-field (CEF) effect;
in 5f systems, CEF levels are less clear due to the
tendency to be itinerant.

One promising candidate material for this study is the
recently found superconductor PrOs4Sb12 [6], which is to
date the only known Pr-based HF superconductor, with a
superconducting transition temperature of 1.82 K (here-
after referred to as Tc1). The estimated electronic specific
heat coefficient � � 350–700 mJ=K2 mol [6,7] and the
enhanced cyclotron-effective masses [8] reflect the exis-
tence of strong electron correlations. Specific heat (C),
magnetic susceptibility (�), and inelastic neutron studies
provide evidence that PrOs4Sb12 has a nonmagnetic
ground state and a magnetic triplet excited state separated
by �ECEF=kB � 8 K [7,9], which is 5 times larger than
Tc1. In the temperature-versus-magnetic-field (T-vs-H)
phase diagram, a field-induced ordered phase (�0H *

4 T) [9] appears close to the superconducting phase (the
upper critical field �0Hc2 � 2:2 T). It was recently
proven to be an antiferro-quadrupolar ordered phase
by elastic neutron scattering measurements [10]. This
0031-9007=03=91(6)=067003(4)$20.00 
the HF superconductivity in PrOs4Sb12, considering that
the T-vs-H phase diagram is analogous to those for the
HF and cuprate systems, where a magnetically ordered
phase exists close to the SC phase in the T-vs-pressure,
-atomic-doping, or -oxygen-content phase diagram. This
scenario is further supported by the enhanced Tc1 com-
pared to Tc � 0:74 K for a 4f0 reference compound
LaOs4Sb12 [8,11].

The remarkable unconventional SC properties de-
scribed below suggest non-s-wave pairing in PrOs4Sb12.
Thermal conductivity measurements in magnetic fields
rotated relative to the crystal axes indicate the presence
of two distinct superconducting phases with different
symmetries with point nodes [12]. The specific heat
also suggests an additional phase transition at Tc2 �
1:65–1:75 K< Tc1 [7,13]. Sb-nuclear-quadrupole-
resonance (NQR) spin-lattice-relaxation rate 1=T1 exhib-
its no Hebel-Slichter peak just below Tc1 [11]. In contrast,
exponential T dependences of 1=T1 in the lower T region
[11] and of the magnetic penetration depth determined by
a transverse-field muon-spin-rotation study [14] indicate,
however, an isotropic energy gap. These behaviors, mak-
ing it difficult to construct a simple picture for the SC
state, suggest that a novel type of HF superconductivity is
realized in this compound.

One important aspect for characterizing a SC state is
whether time-reversal symmetry (TRS) is broken or not
[15]. In a state with broken TRS, the magnetic moments of
Cooper pairs are nonzero and align locally, and thereby a
spontaneous but extremely small internal magnetic field
can appear. To detect such fields, zero-field (ZF) muon-
spin relaxation (�SR) is the most powerful method,
because of its high sensitivity, as small as 10 �T
[16,17]. TRS-broken SC states are quite rare, since an
unambiguous observation of such fields has been made
only in Sr2RuO4 [18]. In the low-T phase of Th-doped
2003 The American Physical Society 067003-1
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observation in UPt3 [20], doubt has been cast later
[21,22].

In this Letter, we report on ZF-�SR measurements for
PrOs4Sb12. The results unambiguously reveal the sponta-
neous appearance of an internal magnetic field in the SC
state, providing clear evidence for broken TRS. This is the
first observation of such superconductivity in undoped
intermetallic compounds.

Conventional �SR measurements were carried out
down to 20 mK using a top-loading dilution refrigerator
at the �A port of the Meson Science Laboratory, KEK-
MSL, Japan. Small single crystals of PrOs4Sb12 with
sizes of & 1 mm grown by the Sb-flux method [8] using
raw materials of 4N(99.99% pure)-Pr, 3N-Os, and 6N-Sb
were used. Clear de Haas–van Alphen (dHvA) oscilla-
tions observed in one of the crystals [8] are indicative of
their high quality. The single crystals with random ori-
entation were glued onto a 4N-silver holder covering
�25 mm�. The silver holder was held in a vacuum space
of the refrigerator by screwing it to a copper rod ther-
mally connected to the mixing chamber. Stray fields at the
sample position were canceled to within 1 �T in all
directions by using three pairs of correction coils and a
flux-gate magnetometer. We implanted spin-polarized
positive muons (��) into the sample and the time evolu-
tion of the �� spin polarization was measured using
positron detectors positioned parallel and antiparallel to
the initial polarization direction.

The time evolution of the ZF muon-spin polarization is
shown in Fig. 1 for T � 4:22, 2.0, and 0.02 K, where a
nonrelaxing background signal originating from ��

stopping mainly in the silver holder had already been
subtracted. No signature of precession is visible, ruling
out the presence of a sufficiently large internal magnetic
field as seen in magnetically ordered compounds. It is
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FIG. 1 (color online). Zero-field �SR spectra in PrOs4Sb12
measured across the superconducting transition temperature
Tc1 � 1:82 K. The corrected asymmetry was obtained by sub-
tracting the temperature-independent contribution from the
silver plate (0.057). The curves are fits to model I given by
Eq. (1). The relaxation rate becomes stronger below Tc1.
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obvious from Fig. 1 that the relaxation becomes stronger
with decreasing T. We tried several functional forms to
reproduce the ZF spectra, and excellent fits to the data
were obtained using two models, I and II. The fitting
using model I,

P� � exp��&t�GKT
z ��; t�;

GKT
z ��; t� � 1

3 �
2
3�1� �2t2� exp��1

2�
2t2�;

(1)

which is commonly used [14,18,20], is shown by the solid
curves in Fig. 1. The Kubo-Toyabe (KT) function GKT

z is
attributed to the muon-spin relaxation due to static ran-
domly oriented local fields at the muon site (caused by
nearby nuclei in the normal state), and ��=���2 (�� �
8:516� 108 s�1 T�1: the �� gyromagnetic ratio) repre-
sents the second moment of the field distribution. The
necessity of exp��&t� indicates the presence of an addi-
tional relaxation process. The best-fit values of � and &
are shown in Fig. 2 along with the specific heat divided by
temperature C=T measured using a single crystal from
the same batch. Around the SC transition, C=T shows two
types of anomalies, i.e., a sharp jump at Tc1 � 1:82 K and
a kink structure at Tc2 � 1:64 K, in a slightly different
way from the reported data [7,13].

It is remarkable that � shows a significant increase with
an onset temperature of around Tc1, indicating the ap-
pearance of a spontaneous internal field correlated with
the superconductivity; this behavior is in marked contrast
with that of &, which increases gradually with decreasing
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FIG. 2. Temperature dependences of the width of the internal
field distribution �, the relaxation rate & in zero field and in
�0HLF � 0:01 T, and the specific heat divided by temperature
C=T. The vertical lines indicate two consecutive transitions at
Tc1 and Tc2 determined from the C=T data.
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T across Tc1 and Tc2 without showing any distinct anoma-
lies. This observation provides unambiguous evidence
that TRS is broken in the SC state of PrOs4Sb12. Note
that the observed increase in � is smaller than the ex-
perimental uncertainty in the previous ZF-�SR measure-
ment [14]. Provided that the increase is of electronic
origin, the electronic (�e) and nuclear (�n) contributions
to � must be uncorrelated and thereby their respective
contributions add in quadrature: �e�T�

2 ��2
n � ��T�2.

From Fig. 2, �n=���1:7�10�4 T and �e�T!0�=���
1:2�10�4 T are derived. The temperature dependence
of �e below Tc1 agrees with that of the BCS order
parameter �BCS�T�, as is evident in Fig. 2, supporting
our interpretation.

The equally probable model II,

P� � exp��&t�	13 �
2
3 cos�!et�
GKT

z ��n; t�; (2)

also fits the data, yielding almost the same �2 statistics as
model I; i.e., the two models are experimentally undis-
tinguishable. This fact points to an alternative possibility
that the spontaneous fields have almost the same magni-
tude (�0He � !e=��) for all �� sites in the sample.
Extracted He�T� data show a similar temperature depen-
dence as �e�T� and approach 1:9� 10�4 T as T ! 0 (not
shown).

As the origin of the increased relaxation in the SC
state, the following spurious effects can be ruled out.
Any inhomogeneous distribution of extremely small
residual fields (< 1 �T � �e�T ! 0�=�� � �0Hc1 �
5� 10�3 T [14]) caused by the superconducting transi-
tion cannot explain the observed anomaly. A null experi-
ment confirmed that the 4N-silver holder does not exhibit
any noticeable anomalies. The absence of such an anom-
aly in the previous measurements for UPt3 [22], CeIrIn5,
and CeCoIn5 [23], performed under the same conditions,
also demonstrates that the observed anomaly is uniquely
attributed to the PrOs4Sb12 specimen.

Any lattice effects are also ruled out for the following
reasons: The observed nuclear dipolar field of 1:7�
10�4 T is close to 2:0� 10�4 T calculated for a most
probable �� stopping site (1=2, 0, 0.15) (12e in
Wyckoff notation, space group Im3), which is one of the
interstitial sites of Sb-icosahedron cages and is sur-
rounded by six nearest Sb ions. This site is the same as
the one expected for an isostructural PrFe4P12, as sug-
gested from transverse-field �SR measurements [24]. A
simple calculation shows that a lattice shrinkage of �7%
would be necessary to explain the observed increase in �
when �e � 0. This scenario contradicts a thermal expan-
sion measurement [25]. Furthermore, the electric field
gradient at the Sb nuclei [11] does not show any corre-
sponding anomalies across the SC transition.

The spontaneous internal field has two types of pos-
sible sources depending on the spin and/or orbital parts of
Cooper pairs having nonzero values: (i) (for both nonzero
067003-3
spin and orbital moments) spontaneous undumped super-
currents induced in the vicinity of impurities, surfaces,
and/or domain walls between the degenerate SC phases,
where the order parameter has spatial inhomogeneities
[15,26,27], and (ii) (for nonzero spin moments) a finite
hyperfine field induced at the �� sites.

An example of the source (i) is found in Sr2RuO4 [18],
where & exhibits a spontaneous increase below Tc. This
can be understood by considering that a dilute distribu-
tion of the sources in the sample would result in a
Lorentzian-type field distribution [28]. Although it is
possible that the present observation in PrOs4Sb12 is
also due to the same type of sources, the spontaneous
increase appears in �e instead of &. This fact suggests
that the field distribution is rather of Gaussian type and
the second moment has a finite value. The mean-free path
‘� 2000 ,A estimated from the Dingle temperature (pro-
portional to the electron scattering rate) in the dHvA
experiments [8], which is much larger than the SC coher-
ence length �0 � 120 ,A, suggests that the sample is in a
clean limit. If the scattering centers determining the
Dingle temperature are the main sources of the sponta-
neous fields, the average nearest-neighbor distance (� ‘)
would be comparable to the magnetic penetration depth
� � 3400 ,A [14]. This could explain why the field distri-
bution is of Gaussian type. Although quantitative com-
parisons with the models [26,27] are hampered by a lack
of detailed information on the sources, it is certain that
the field at the center of the sources should be much larger
than �e=��.

The field source (ii) is possible only if the SC pair-
ing symmetry is not only of spin triplet (odd parity),
but also of ‘‘nonunitary’’ type (analogous to the A1

phase of superfluid 3He [29]). In such a state, the three-
dimensional vector function d�k�, representing the wave-
vector dependent SC order parameter [15], is complex
and a nonzero spin moment given by d�k� � d�k�� could
produce a finite hyperfine field on ��. Note that no
experimental identification of such nonunitary super-
conductivity has ever been reported. If this is the case
in PrOs4Sb12, �0He corresponds to the ‘‘intrinsic’’ spon-
taneous field at �� sites, which is irrelevant to the ex-
istence of impurities. The magnitude of the field can
be theoretically estimated to be �7� 10�4� T [30],
where � denotes the degree of the electron-hole asym-
metry of the conduction band at the Fermi level and
is of the order of Tc=TF (TF is the Fermi tempera-
ture or the Kondo coherence temperature of the heavy
quasiparticle band). A simple estimation of �1�
10�4 T using TF � 10 K, which is given by the tem-
perature dependence of T1 [11], is in good agreement
with the present observation. A unique feature of the
nonunitary state is that the spin-up and spin-down
Cooper pairs have different sizes of the excitation
gap [15,30]. The smaller gap branch with jd�k�j2 �
jd�k� � d�k��j � 0 might explain apparent residual
067003-3
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FIG. 3. Longitudinal field HLF dependence of the relaxation
rate &. The curves are fits to the model given by Eq. (3).
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contributions appearing at T � Tc1 in some physical
quantities [11,12].

We performed measurements in weak longitudinal
fields (LF) (�0HLF), parallel to the initial �� polariza-
tion, and confirmed that the spontaneous internal fields
are static on the microsecond time scale. In the mixed
state after field cooling in �0HLF � 100� 10�4 T, the
relaxation due to the spontaneous fields is no longer
visible (already decoupled), and excellent fits to the spec-
tra are obtained using only the exp��&t� term. The
temperature dependence of & in this field (see Fig. 2)
exhibits no distinct anomaly through the SC transition.

In zero field, & shows a gradual increase with decreas-
ing temperature even in the normal state, in contrast to
other HF superconductors [19,20,22]. The HLF depen-
dence of & shown in Fig. 3 can be nicely fitted by the
Redfield model:

& � 2����0Hloc�
2!c=	1� ����0HLF!c�

2
; (3)

indicating that this relaxation process is due to fluctuating
local fields characterized by the magnitude �0Hloc �
3:7 �4:7� � 10�4 T and the correlation time !c �
0:51 �0:27� �s for 2.0 (4.2) K. We expect that the relaxa-
tion process represented by & may reflect the 4f-electron
dynamics associated with the gap feature given by �ECEF.

In conclusion, the ZF-�SR measurements in PrOs4Sb12
have revealed an appreciable increase in the internal
magnetic fields below around the onset of superconduc-
tivity (Tc1 � 1:82 K). This provides clear evidence for
the broken TRS in the SC state, which will help us to
narrow down the number of possibilities for the symme-
try of the SC order parameter. From the present results,
however, a definite conclusion cannot be drawn regarding
which part of the Cooper pairs, spin or orbital (or both),
carries a nonzero magnetic moment. The broken TRS
indicates that the SC state belongs to a degenerate repre-
sentation, which has internal degrees of freedom. This is
in line with the possible existence of multiple supercon-
ducting phases suggested by the specific heat and thermal
067003-4
conductivity studies. Considering the normal state proper-
ties, where quadrupolar degrees of freedom of Pr ions
play a major role, the present results point to an exotic
conjecture that the magnetic and heavy Cooper pairs in
PrOs4Sb12 are formed by nonmagnetic interactions me-
diated by quantum quadrupole fluctuations. Although this
needs to be substantiated further by other means,
PrOs4Sb12 provides us with a new, and apparently unique,
example of superconductivity in the field of strongly
correlated electron systems.
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