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Relaxation and the Zeno Effect in Qubit Measurements
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We consider a qubit interacting with its environment and continuously monitored by a detector
represented by a point contact. Bloch-type equations describing the entire system of the qubit, the
environment, and the detector are derived. Using these equations we evaluate the detector current and
its noise spectrum in terms of the decoherence and relaxation rates of the qubit. Simple expressions are
obtained that show how these quantities can be accurately measured. We demonstrate that due to
interaction with the environment, the measurement can never localize a qubit even for infinite
decoherence rate.
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strate in this Letter that any weak relaxation delocalizes contact detector and its interaction with the qubit:
An account of decoherence and relaxation in quantum
evolution of a two-level system (qubit), interacting with
an environment and a measurement device, has become a
problem of crucial importance in quantum computing.
Numerous publications have appeared on this subject
dealing with interactions either with a measurement de-
vice (detector) [1–3] or with the environment (a thermal
bath) [4,5]. Generally, the simultaneous influence of an
environment and a detector on a qubit is very important
for understanding qubit measurements because the envi-
ronment and the detector act on the qubit in different
ways. For instance, the environment at zero temperature
relaxes the qubit to its ground state. As a result the qubit
finally appears in a pure state, even though it was initially
in a statistical mixture. On the other hand, the measure-
ment device puts the qubit in a statistical mixture, even if
it was initially in a pure state.

One of the most striking measurement effects in which
the role of relaxation has not been investigated is the so-
called Zeno paradox [6]. It consists of total freezing of a
qubit in the limit of continuous measurement. Usually, it
is associated with the projection postulate in the theory of
quantum measurements. Indeed, it follows from the
Schrödinger equation that the probability of a quantum
transition from an initially occupied state of a qubit is
P��t� � a��t�2, where a is a factor which depends on the
system [6]. If we assume that �t is the measurement time
which determines the time scale on which the system is
projected into the initial state, then after N successive
measurements the probability of finding the qubit in its
initial state, at time t � N�t, is P�t� � �1� a��t�2��t=�t�.
Thus P�t� ! 1 for �t ! 0, N ! 1, and t � const.
Including the environment into the Schrödinger equation
for the entire system one would expect from the above
arguments that the relaxation processes could affect only
the coefficient a but cannot destroy the qubit localization
in the limit of �t ! 0.

This conclusion, however, is not correct. We demon-
0031-9007=03=91(6)=066801(4)$20.00 
the qubit even in the limit of continuous measurement. It
is shown by using new Bloch-type quantum rate equa-
tions for the description of a qubit interacting with a
detector and its environment. These rate equations are
derived from the microscopic Schrödinger equation for
the entire system. Using these equations, we determine
the qubit behavior without any phenomenological pa-
rameters. In addition, we are able to relate the qubit
behavior to the detector outcome and therefore establish
how decoherence and relaxation rates of the qubit can be
accurately measured.

With respect to the contradiction of our results to the
Zeno paradox arguments, it is possible that the simple
derivation described above is not valid when the environ-
ment is taken into account. One reason is that the expan-
sion of P�t� � at2 	 
 
 
 near t � 0 is not valid because of
the discontinuity of P0�t� at t � 0. The latter arises due to
the transition to the continuous and sufficiently flat spec-
trum of the environment[7,8]. We present our result for an
environment at zero temperature, where the interplay
between decoherence and relaxation is most pronounced.
(The detector, however, is far from equilibrium.)

Let us consider the generic example of electrostatic
qubit measurements. The qubit is an electron in a
double-dot system, whereas the detector is a point contact
placed near one of the dots (Fig. 1). When the electron
occupies the first well close to the point contact, Fig. 1(a),
the current is smaller than in Fig. 1(b) due to the electron
electrostatic repulsion. Thus, the electron is continuously
monitored by the tunneling current. The entire system can
be described by the tunneling Hamiltonian H � H0 	
HPC 	Hint, where

H0 � E1a
y
1a1 	 E2a

y
2a2 �0�a

y
1a2 	 ay2a1� (1)
is the qubit Hamiltonian and HPC; Hint describe the point
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FIG. 1 (color online). A point-contact detector monitoring
the electron position in the double dot. �L;R denote the chemi-
cal potentials in the left and right reservoirs.
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Here ayl �al� and ayr �ar� are the creation (annihilation)
operators in the left and right reservoirs, and lr is the
hopping amplitude between the states l and r of the
reservoirs. For simplicity we consider electrons as spin-
less fermions and assume each of the reservoirs is at zero
temperature. The interaction term Hint generates a change
in the hopping amplitude, �lr � 0

lr �lr. We assume
that the hopping amplitude is weakly dependent on the
states l; r, so that it can be replaced by its average value,
lr ’

� and �lr ’ � �. Thus the detector current is
I1 � e2� �2�L�RV when the electron occupies the first
dot, and I2 � e2�� �	 � ��2�L�RV when the electron
occupies the second dot [1]. Here �L;R are the density of
states in the reservoirs and V � �L ��R is the bias
voltage.

It was shown in [1] that for the case of a large bias
voltage V, one can reduce the Schrödinger equation for
the entire system to Bloch-type rate equations describing
the reduced density matrix of the electron, �ij�t�. The
diagonal terms of this density matrix, �11�t� and �22�t�,
are the probabilities of finding the electron in the first dot
or in the second dot, respectively. The off-diagonal ma-
trix elements (‘‘coherences’’) �12�t�; �21�t� describe lin-
ear superpositions of these states. One finds [1]

_��11 ��i0��12 � �21�; (3a)

_��12 � i��12 � i0�2�11 � 1� � ��d=2��12; (3b)

where �22�t� � 1� �11�t� and �21 � ��
12�t�. Here E1;2 �

��=2 and �d � �
���������
I1=e

p
�

���������
I2=e

p
�2V=2� is the decoher-

ence rate due to interaction with the detector. Solving
Eqs. (3a) and (3b), one obtains that the decoherence
term in Eq. (3b) leads to a vanishing of coherences in
the limit t ! 1. Finally the electron density matrix
becomes a completely random mixture for any initial
condition: �ij�t ! 1� � �1=2��ij.

Now we introduce the environment, represented by a
boson bath at zero temperature and interacting with the
066801-2
electron. First, consider the case in which the electron is
not coupled to the detector, Hint � 0. Then, for any initial
conditions, the electron relaxes to its lowest energy state
(E	) through boson emission. This final state can be
found by disregarding any possible renormalization of
the electron states due to interaction with the boson field.
We thus diagonalize the Hamiltonian H0, Eq. (1) by
using the following ‘‘rotation’’: a	;� � � cos��=2�a1;2 	
sin��=2�a2;1, with tan� � 20=�. Then H0 � �~��=2� �
�ay�a� � ay	a	�, where ~�� � ��2 	 42

0�
1=2.

In order to account for the above relaxation effects in
the qubit evolution, we replace the Hamiltonian H0 by the
following Hamiltonian:

H0
0 � H0 	

X
�

�E�b
y
�b� 	 c��a

y
	a�b

y
� 	 ay�a	b���;

(4)

where by��b�� are creation (annihilation) operators of a
boson with the energy E�. This Hamiltonian is essen-
tially equivalent to the Lee model and has been inves-
tigated in numerous works [9]. In the weak coupling limit
this model leads to the same results as the usual spin-
boson model, although it includes an additional, direct
coupling between the qubit states ay1;2j0i.

If there is no interaction with the detector, Hint � 0,
and c� is weakly dependent on E�, one can trace the
boson variables in the Schrödinger equation, by reducing
it to the rate equations for the electron density matrix in
the basis states, ay�j0i [9],

_�����t� � ��r����t�; (5a)

_��	��t� � i~���	��t� � ��r=2��	��t�; (5b)

with �		�t� � 1� ����t� and ��	�t� � ��
	��t�. Here

�r � 2�c2��� is the relaxation rate and �� is the density
of boson states. Equations (5a) and (5b) obviously repro-
duce an exponential decay (relaxation) of the electron
from the upper level E� to the ground level E	: ����t� �
exp���rt�. Note that the off-diagonal density-matrix ele-
ment �	��t� vanishes in the limit t! 1, similar to
�12�t� in Eq. (3b). Yet, the disappearance of off-diagonal
density-matrix elements does not necessarily imply de-
phasing. Indeed, in the case of relaxation, Eqs. (5a) and
(5b), the diagonal term ����t� vanishes as well for
t! 1. As a result, the qubit finally appears in a pure
state (the ground state), in contrast to Eqs. (3a) and (3b)
leading to the statistical mixture. Now let us include the
interaction with the detector. Then the Hamiltonian of the
entire system becomes H0 � H0

0 	HPC 	Hint. It is useful
to return to the original qubit basis ay1;2j0i, in which Hint,
Eq. (2), has a simple form. The corresponding rate equa-
tions for the qubit density matrix �ij�t� are obtained by
tracing the detector and boson degrees of freedom. These
equations can be written directly by using the method of
Refs. [1,10]. We obtain
066801-2
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_��11 ��i0��12 � �21� � �r���=2~�����12 	 �21� � ��r=4��1	 ��=~���2��2�11 � 1� 	 �r��=2~���; (6a)

_��12 � i��12 � �i0 	 �r���=2~�����2�11 � 1� 	 �r��� �1=2��12 � �2��12 	 �21�� � ��d=2��12; (6b)
where � � 0=~��. (Similar equations were obtained by
Korotkov [11] in the weak coupling limit by using phe-
nomenological arguments.)

Solving Eqs. (6a) and (6b) for � � 0, one obtains the
qubit density matrix for the stationary state ( _�� � 0)

��� � ��t ! 1� �

�
1=2 y=�1	 2y�

y=�1	 2y� 1=2

�
; (7)

where y � �r=�d. This describes a heated qubit with an
effective temperature Teff � 20= ln�1	 4y�. This heat-
ing is caused by the measurement process [12].

Now we investigate how the relaxation affects the time
dependence of the qubit density matrix. Consider again
the symmetric case, � � 0. Let us evaluate the probabil-
ity of finding the electron in the first dot, �11�t�. By
solving Eqs. (6) for the initial conditions �11�0� � 1,
�12�0� � 0, we find

�11�t� �
1

2
	
e��rt=2

4
�C1e�e�t 	 C2e�e	t�; (8)

where e� � 1
4 ��d ��,  �

������������������������
�2
d � 642

0

q
, and C1;2 �

1� ��d=�. Thus, for the case of weak decoherence,
�d � 80, the electron displays damped oscillations
between the dots with the Rabi frequency,�������������������������������������
�20�

2 � ��d=4�
2

p
.

For strong coupling to the detector, �d � 80, the
situation is different. If �r � 0, the electron would stay
in the same dot for a long time (‘‘quantum Zeno’’ effect).
The dwell time "Z obtained from Eq. (8) is �d=82

0. Thus
the increase of �d leads to a freezing of the electron,
which is totally localized in the limit of �d ! 1. This
result is consistent with the Zeno paradox, based on the
066801-3
projection postulate. Indeed, the ‘‘measurement time’’ �t
is inversely proportional to �d. (See, for instance, [3,13].)
Also one can observe from Eq. (8) that for small �t, and
�r � 0P��t� � �1� �11�t�� / ��t�2. However, as follows
from Eq. (8), the interaction with the environment essen-
tially destroys the Zeno effect. We find that the Zeno time
in this case is "�1

Z � ��r=2� 	 �82
0=�d�. Therefore the

continuous measurement cannot localize the electron for
a long time, even if �d ! 1. The corresponding dwell
time is restricted by the relaxation rate ��1

r . The disap-
pearance of the Zeno paradox can be understood as
follows. It is crucial to observe that the relaxations due to
the environment and the detector are factorizable, as seen
in Eq. (8). As a result of this factorizability, an effective
linear in the �t term, generated by purely exponential
decay for small �t, appears in the expansion of P��t�.
This leads to the elimination of the Zeno effect [7,8].

Now we relate the qubit behavior to the corresponding
observable quantities. For this, we have to include the
detector states in the rate equations (6). We thus introduce
the (reduced) density matrix ��nn0�

ij �t�, where index n
denotes the number of electrons that have arrived in the
right reservoir by the time, t [8]. This density matrix is
related to the previous one by �ij�t� �

P
n�

�n�
ij �t�, where

��n�
ij � ��nn�

ij . Starting from the microscopic Schrödinger
equation for the entire system and using the same method
as in Refs. [1,8,10] we can demonstrate that in the limit
of high bias voltage V of the detector, Fig. 1, the off-
diagonal density-matrix elements ��nn0�

ij are decoupled
from the diagonal elements ��n�

ij in the equation of motion
[8]. As a result we arrive at the following Bloch-type rate
equations:
_���n�
11 ��i0��

�n�
12 � ��n�

21 � � �r���=2~�����
�n�
12 	 ��n�

21 � �
�r
4
�%2

��
�n�
11 � %2

	�
�n�
22 � �

I1
e
���n�

11 � ��n�1�
11 �; (9a)

_���n�
22 � i0��

�n�
12 � ��n�

21 � 	 �r���=2~�����
�n�
12 	 ��n�

21 � 	
�r
4
�%2

��
�n�
11 � %2

	�
�n�
22 � �

I2
e
���n�

22 � ��n�1�
22 �; (9b)

_���n�
12 � i���n�

12 � i0��
�n�
11 � ��n�

22 � 	 �r���%
0
��

�n�
11 	 %0

	�
�n�
22 � � �1=2���n�

12 � �2���n�
12 	 ��n�

21 ��

�
I1 	 I2
2e

��n�
12 	

��������
I1I2

p

e
��n�1�

12 ; (9c)
where %� � 1� ��=~��� and %0
� � 1� ��=2~���. Tracing

Eqs. (9) over n and using �11�t� 	 �2�t� � 1 we obtain
Eqs. (6).

Equations (9) allow us to evaluate the average detector
current and its shot-noise power spectrum. The (en-
semble) average current is given by

I�t� � e
X

n _PPn�t� � �I1 � I2��11�t� 	 I2; (10)

where Pn�t� � ��n�
11 �t� 	 ��n�

22 �t� is the probability of find-
ing n electrons in the collector by time t. As expected, the
average current is directly related to the occupation of the
first dot. The shot-noise power spectrum can be calculated
via the McDonald formula [14,15]

S�!� �
e2!
�

Z 1

0
dt sin�!t�

d
dt
N2
R�t�; (11)

where N2
R�t� �

P
nn

2Pn�t�.
Now we investigate how the relaxation and decoher-

ence rates can be extracted from I�t� and S�!�. Consider
first the stationary detector current �II � I�t! 1� for
the symmetric case (� � 0). It follows from Eqs. (7)
and (10) that �II � �I1 	 I2�=2, so that it is independent
066801-3
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FIG. 2. The excess noise power spectrum of the detector
current for different decoherence and relaxation rates. The
solid curves correspond to �r � 0, and the dashed curves to
�r � 0:10.
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of y � �r=�d. Therefore this ratio cannot be extracted
from �II for � � 0. However, for a nonsymmetric qubit,
� � 0, the detector current becomes sensitive to y.
Indeed, �II � �I1 	 I2�=2 for �r � 0 and �d � 0 , but �II ’
I1 for �d � 0 and �r � 0 (since the relaxation puts the
system into the lowest energy state, E	 � E1 for � �
0). Using Eqs. (6) and (10) we obtain for � � 0

�II � �I
y	 �0=��2

y	 2�0=��2
	 I2; (12)

where �I � I1 � I2.
Since in the symmetric case � � 0, the relaxation does

not affect the stationary current �II. It instead affects its
transient properties, which are reflected in the shot-noise
spectrum of the detector current, S�!�, given by Eq. (11).
One can write S�!� � S0 	�S�!�, where the first term
S0 � e�I1 	 I2� is the Schottky noise and the second term
is the excess noise generated by the qubit dynamics.
Generally the analytic expression for �S�!� is rather
lengthy. We therefore present it only for � � 0 and in
two limits: �d;�r � 0 and �d � 0. In the first case
the excess noise can be very well approximated by a
Lorentzian

�S�!� �
��I�2��d 	 2�r�

��d 	 2�r�
2 	 16�!� 20�

2 : (13)

This corresponds to the result of Korotkov, obtained by a
Bayesian approach (‘‘continuous’’ wave function col-
lapse) in the weak coupling limit [11].

The second case, �d � 0, corresponds to the Zeno
effect regime. We find

�S�!� �
��I�2�16�d

2
0 	 �r�

2
T�

4��2
d!

2 	 4�!2 � 42
0�

2� 	 �r�d�
2
T

; (14)

where �T � �d 	 �r.
The excess noise, �S�!�, for different values of �d;�r

and � � 0 are shown in Fig. 2. As expected, for �d & 0,
the Rabi oscillations generate a peak in the noise spec-
trum at ! � 20. The relaxation modifies this peak
according to Eq. (13). In the case of large decoherence
rate �d � 0 and �r � 0, the qubit is in the regime of the
066801-4
Zeno effect. This leads to a telegraph noise [11], resulting
in a peak at ! � 0. This peak, however, is strongly
diminished in the presence of relaxation, even for a small
�r, as given by Eq. (14).

This strong dependence provides a new way to measure
the relaxation rate of a quantum system in experiments.
As seen in Fig. 2, one can measure the relaxation rate of a
qubit via the noise spectrum of the detector at zero
frequency. Specifically, the relaxation rate can be lower
by 2 or more orders of magnitude compared with the
dephasing rate and still change the noise spectrum sig-
nificantly. With such sensitivity, one may more accurately
measure the relaxation rate because one can increase the
output signal by increasing the coupling between the
qubit and the detector.

In summary, we found that a qubit interacting with its
environment and with a detector can be described by a set
of modified Bloch-type equations in which the decoher-
ence and relaxation process are clearly distinguished. The
most interesting result of our analysis is that there is no
Zeno paradox when the relaxation due to the environment
is taken into account. In addition, we obtained simple
analytical expressions for the detector current and its
noise spectrum. Using these findings, we proposed a
new and possibly more accurate way to measure the qubit
decoherence and relaxation rates.
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