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Breakdown of a Mott Insulator: A Nonadiabatic Tunneling Mechanism
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Time-dependent nonequilibrium properties of a strongly correlated electron system driven by large
electric fields is obtained by means of solving the time-dependent Schrödinger equation for the many-
body wave function numerically in one dimension. While the insulator-to-metal transition depends on
the electric field and the interaction, the metallization is found to be described in terms of a universal
Landau-Zener quantum tunneling among the many-body levels. These processes induce current
oscillation for small systems, while giving rise to finite resistivity through dissipation for larger
systems/on longer time scales.
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Zener quantum tunneling governs the nonlinear conduc-
tion, where the fit is surprisingly good although the

tonian at t � 0, j��t � 0�i 
 j�0i, which is obtained
with the Lanczos method. The time integration of the
Introduction.—Nonlinear responses and time-
dependent phenomena are an open frontier in the physics
of strongly correlated systems. Properties beyond the
linear-response or time-dependent properties have been
much discussed [1], but remain a challenging problem,
which is, theoretically, due to the difficulty in dealing
simultaneously with the many-body effect (correlation)
and finite current (nonequilibrium), which are both non-
perturbative physics.

In this Letter, we consider the Hubbard model under
constant driving forces in one dimension. The ground
state of the half-filled Hubbard system is a Mott in-
sulator [2] for arbitrary strengths of the electron-electron
repulsion U > 0, while the state is metallic when the band
filling is shifted away from the half-filling by doping
carriers. So the question we pursue here is the following:
what will happen if we destroy the Mott insulator by
applying strong electric field, instead of doping?

There are existing theoretical approaches that employ
the Bethe ansatz method, and the closing of the Mott gap
has been discussed [3,4]. In these studies, however, elec-
tric fields are not actually applied, but the left-going and
right-going hopping terms are made different instead.
It is rather difficult to relate this artificial, and non-
Hermitian, model with a system in an electric field.
That is why we have here opted for actually applying
electric fields for the first time to keep track of the time
evolution of the many-body wave functions and levels.
For that we make use of a numerical integration of the
time-dependent Schrödinger equation.

We have found that the electric field, if strong enough,
breaks the Mott-insulator phase. While the critical field
strength required for the breakdown of the Mott insulator
depends sensitively on the magnitude of the electron-
electron interaction, we propose here that the mechanism
for the metallization can be viewed as the nonadiabatic
tunneling between the many-body levels. We have verified
this by confirming numerically that a universal Landau-
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Landau-Zener formalism is originally intended for one-
body problems while the problem at hand, being many-
body, involves the Hilbert space with huge dimensions.

Just after the metallization, we have a self-induced
current oscillation. While this should be realistic for
mesoscopic systems, for large systems or on a longer
time scale, a novel, ‘‘Ohmic’’ conduction is found to
result. This occurs despite the absence of disorder and
the heat bath degrees of freedom, but a series of non-
adiabatic tunneling among many-body states is respon-
sible for the dissipation effect. Indeed, the breakdown of a
one-dimensional (1D) [5] as well as two-dimensional
(2D) [6] Mott insulator has been experimentally studied,
and, among other interesting phenomena including spon-
taneous density-pattern formations [5–7], a seemingly
Ohmic conduction was found for a rather wide range of
external electric field, until the Ohmic conduction is
eventually broken.

Formulation.—To get rid of ambiguities arising from
the electrodes, we have opted here for a periodic system (a
ring in 1D), where the electric field F is applied via a
time-dependent AB flux ��t� � eLFt piercing the ring
[inset of Fig. 1(a); L, sample length]. This will lead to a
circular electromotive force due to Faraday’s law. The flux
makes the hopping integral in a tight-binding model
complex, where the Hamiltonian is

H�t� � �
W
4

X
i;


� e2�i��t�=Ncyi�1
ci
 � h:c: � �U
X
i

ni"ni#:

(1)
Here W is the bandwidth, U the electron-electron repul-
sion, and N � L=a the total number of sites with a being
the lattice constant. Hereafter we take the unit in which
e � a � h � 1.

We have then to solve the time-dependent Schrödinger
equation, i ddt j��t�i � H�t�j��t�i, which governs time
evolution of the quantum system at absolute zero tem-
perature, starting from the ground state of the Hamil-
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FIG. 1. (a) Time evolution of the current, J�t�, for a half-
filled, 10-site Hubbard model for various strengths of the
correlation, 0 � U=W � 5, for a fixed electric field F �
1=10L. Time is measured in units of �W 
 4 
h=W, LF in
W=�4 
h�, and J�t� in 1=�W . The range of the time in this panel
corresponds to a range of the AB flux 0 � �=�0 � 1. The inset
schematically depicts the sample geometry, where an AB flux,
��t� � LFt, increasing linearly with time induces an electric
force through Faraday’s law. (b) A longer-time behavior of the
current when F is varied with a fixed U=W � 0:25, again for
the half-filled case. Here the horizontal axis is LFt � ��t�=�0

and over 0 � �=�0 � N�� 10 here). The inset schematically
shows three kinds of behavior: MI, Mott insulator; M, metal;
PM, perfect metal. (c) A plot similar to (b) for a non-half-filled
case (N" � N# � 3<N=2 � 5).
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state vector, which, being many-body, has a huge dimen-
sion, requires a reliable algorithm. So we adopt here
Cranck-Nicholson’s method [8] that guarantees the uni-
tary time evolution, where the time evolution is put in a
form, j��t� 	t�i � e�i

R
t�	t

t
H�t� dt j��t�i ’ �1� i	t=

2H�t� 	t=2��=�1� i	t=2H�t�	t=2�� j��t�i; which is
unitary by definition. Here the time step is taken to be
small enough (dt � 1:0� 10�2 with the time in units of
066406-2
4 
h=W hereafter) to ensure convergence for N � 10 site
systems, for which the dimension of the Hamiltonian is
�104. We have concentrated on the total Sz � 0 subspace
with N" � N# � N=2.

Result.—We first plot in Fig. 1(a) the result for the
expectation value of the current density averaged over
the sites,

J � �
W
4 N

X
i;


�ie2�i�=N cyi�1
ci
 � h:c:�: (2)

The behavior of J�t� for various values of U with a fixed
value of the electric field F is seen to fall upon three
regimes when U is varied: A perfect metallic behavior
[J�t� / t] when the electrons are free (U=W � 0), while
when the interaction is strong enough (U=W � 1) the
current has a zero expectation value. For an intermediate
regime of U=W we have finite J’s with some oscillations
in the current for finite systems. By contrast, a non-half-
filled system has the time evolution distinct from the
ground-state behavior. The difference has its root in the
spectral property as will be discussed later.

Now, Fig. 1(b) plots the time evolution of the current
when the electric field F is varied with a fixed value of
U=W, again for the half-filled case. The result may be
summarized as follows:

(i) Small F regime (Mott insulator): A drastic differ-
ence between the half-filled and doped systems appears
for small F. When half-filled, J�t� in the limit of F ! 0
smoothly approaches the hJ�t�i � 0 behavior of the
ground state (Mott insulator). Here hJ�t�i is the time-
averaged current. On top of the hJ�t�i � 0 an oscillatory
behavior with the period of �0�
 e=h � 1: flux quan-
tum) is seen, which is nothing but the AB oscillation (a
sawtooth, due to a symmetry about � � �0=2).

(ii) Moderate F regime (metal): In this regime, the
current in the half-filled case shows an oscillatory behav-
ior [see typically the LF � 0:008 data in Fig. 1(b)].

(iii) Large F regime (perfect metal): When the electric
field F becomes large enough, the system becomes a
metal, in which hJ�t�i / t for 	�<�0N=4. A further
oscillation in J�t�, with a long period (	� � �0N), is
seen, which we will discuss later.

The F dependence of hJi is displayed in Fig. 2 as the
I-V characteristics for various values of U. Here the time
average hJi �

R
	t
0 hJ�t�idt=	t �LF	t � N�0=4� of the

current density J�t� is taken over one-fourth of the ex-
tended AB period (0 � � � N�0=4), since we are inter-
ested in the rise in the current which should represent the
behavior in the thermodynamic limit. We can see that hJi
becomes nonzero rather abruptly at the metallization,
where the threshold electric field increases with U=W,
thereby the F dependence becoming weaker. Just after
the metallization some oscillation (in the F dependence
this time) is seen for finite systems.

Nonadiabatic tunneling.—In order to understand the
physics underlying these time evolutions and their F
066406-2
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FIG. 3. (a) Landau-Zener process around a level anticrossing,
where 	E denotes the gap, p the transition probability, and  E
the difference between the ‘‘unperturbed,’’ crossing energy
levels (dashed lines). (b) U dependence of the many-body
gap 	E marked with a double circle in (c). (c) The low-lying
levels versus � for the Hamiltonian Eq. (1) in the half-filled
case (N � 10 with N" � N# � 5) for U=W � 0:125. Level
repulsions due to the interaction U are encircled. (d) A similar
plot for a doped case (N � 10 with N" � N# � 3).
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FIG. 2. I-V characteristics for various values of U=W for the
half-filled Hubbard model with N � 6.
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FIG. 4. (a) Time evolution of the weight of the ground state,
jh�0j��t�ij2, calculated for the half-filled Hubbard model
(N � 10; N" � N# � 5) for various values of F with U=W �
0:025. The inset shows the solutions [14] of the LZS equation
with its asymptotic values indicated. (b) Transition probability
p (decrease in jh�0j��t�ij2) plotted against the LZS parameter
��	E�2= _EE� � _EE � �d E=d��LF� for various values of F
and U=W.
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dependences, let us here evoke the notion of nonadiabatic
tunneling, originally conceived for one-body problems by
Landau, Zener, and Stückelberg (LZS) [9–11]. When a
parameter defining the Hamiltonian is varied infinitely
slowly (adiabatically), we can just plot a set of energy
levels against the parameter, which in general contain
level anticrossings, since the two levels should repel with
each other unless they are allowed to cross due to, e.g.,
symmetry reasons. An initial state that starts from one of
the lines should evolve with time sticking to that line
[adiabatic theorem, corresponding to p � 0 in Fig. 3(a)].
When the parameter is varied with a finite velocity, the
state can make a transition across the level anticrossing
with a finite probability p�� 0 in Fig. 3(a)], where the
transition is caused by a quantum mechanical tunneling
across the gap 	E. The transition probability p depends
on the speed the two energy level approach ( _EE) as

p � exp

�
�2�

�	E�2

 _EE

�
� exp

"
�2�

�	E�2

d E
d� LF

#
: (3)

Here  E is the difference between the ‘‘unperturbed,’’
crossing energy levels [dashed lines in Fig. 3(a)] and
 _EE 
 d E=dt � �d E=d�� _�� with LF � d�=dt. We
can immediately see that the process is nonperturbative
in F, since p is singular in F.

Although the original LZS theory is devised for one-
body systems, there is no reason why we cannot apply it to
many-body systems, as demonstrated for a spin system by
Miyashita et al. [12,13]. So here we apply the concept to
the Hubbard model, which is, to our knowledge, the first
time the LZS theory is applied to interacting electron
systems. In order to check the validity of the LZS picture,
we have first calculated the transition probability p. The
level anticrossing we focus on is the first one encountered
by the ground state at � � �0=2 in the level flow [marked
with a double circle in Fig. 3(c)]. In Fig. 4(a) we plot
jh�0j��t�ij2, the weight of the ground state around the
level anticrossing, for various values of U and F. From
this we have obtained the transition probability p as the
asymptotic value of jh�0j��t�ij2 [14]. Figure 4(b) plots
� logp as a function of the LZS parameter, �	E�2=� _EE�,
066406-3
with 	E now defined as the interaction-originated one.
We can see a remarkably accurate linear dependence on
the LZS parameter, which clearly indicates that the LZS
theory is applicable to the many-body system we have at
hand. So the field F and the interaction U enter into the
066406-3



FIG. 5. Time-averaged current plotted against the inverse
LZS parameter �d E=d��=�	E�2 � LF for various values of
U=W and F in the half-filled Hubbard model with N � 6 (open
symbols) and N � 8 (solid ones). The inset is a blowup of the
same data for small F on a log scale.
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problem only as a combination �	E�U��2=��d E=d��LF�
[where 	E�U� is an increasing function of U; see
Fig. 3(b)].

For large enough electric field F the nonadiabatic tun-
neling is so effective that the state goes straight across
each crossing with probability close to unity, so we end up
with a long period (	� � �0N), an analogue of the
‘‘extended AB period’’ discussed for electron systems by
Kusakabe and two of the present authors [15,16], a notion
originally proposed for a spin (Heisenberg) system by
Sutherland [17].

Encouraged by this, we have then replotted the time-
averaged current, hJi, against the inverse of the LZS
parameter �d E=d��=�	E�2 � LF, in Fig. 5. Dramati-
cally, all of the curves, which appeared quite different for
different values of U=W in the raw I-V characteristics
(Fig. 2), fall on a single, universal curve within a reason-
able error when plotted against the LZS parameter.
Specifically, a threshold between the insulating behavior
and the dissipative metallic one is clearly seen at around
F� 0:5� �	E�2=��d E=d��L�.

After the metallization the current is seen to behave
roughly linearly with F, which is surprising, since we
have a many-body but clean system. This implies that
(i) after many level crossings the system reaches a steady
state, and (ii) the many-body gaps at these level crossings
have similar magnitudes as the first one (	E above). We
can in fact recall that the nonadiabatic tunneling is a
quantum version of dissipation, where different quantum
states become mixed after level anticrossing. Let us
examine the nature of the many-body gap 	E�U� in the
half-filled Hubbard model, which is a charge gap char-
acteristic to the half-filled Hubbard model and vanishes
066406-4
when doped [Fig. 3(c)]. The total momenta of the anti-
crossing states (the ground state and the excited state with
one pair of complex charge rapidities [18]) differ by 2kF
where kF is the Fermi wave number (for small U; replace
kF with the quasimomentum for general U). At half-
filling, these umklapp processes take place and the mo-
mentum of the many-body state is dissipated. In other
words, the role of heat bath degrees of freedom [19] is
played by the many-body system itself. Let us add that the
current oscillation [typically seen for LF � 0:008 in
Fig. 1(b)] is due to the kicks from umklapp processes
and should be observed in small systems with strong
electron correlation. The threshold electric force, F ’
0:5�	E�2=��d E=d��L�, has a similar order of magni-
tude as the critical field observed in the experiment [5].
The threshold electric force, F� �	E�2=��d E=d��L�,
should approach an asymptotic value in the thermody-
namic limit, since �d E=d��j���0=2���d2E=d�2�j��0�
Drude weight� � 1=L should cancel the L in the
denominator.
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