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At a generic quantum critical point, the thermal expansion � is more singular than the specific heat
cp. Consequently, the ‘‘Grüneisen ratio,’’ � � �=cp, diverges. When scaling applies, �� T�1=��z� at the
critical pressure p � pc, providing a means to measure the scaling dimension of the most relevant
operator that pressure couples to; in the alternative limit T ! 0 and p � pc, �� 1=�p� pc� with a
prefactor that is, up to the molar volume, a simple universal combination of critical exponents. For a
magnetic-field driven transition, similar relations hold for the magnetocaloric effect �1=T�@T=@HjS.
Finally, we determine the corrections to scaling in a class of metallic quantum critical points.
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Grüneisen ratio is then temperature independent and FIG. 1. Schematic phase diagram with a QCP.
Introduction.—The anomalous behavior observed in an
increasing number of systems, ranging from insulating
magnets and heavy fermion compounds to cuprate super-
conductors, has been attributed to the presence of quan-
tum critical points (QCPs). These occur in systems where
a continuous quantum phase transition (QPT) at T � 0
is induced by tuning some control parameter such as
pressure p, doping, or magnetic field H. Such zero-
temperature critical points can determine the properties
of materials in a wide range of temperatures. In general,
quantum critical points are more difficult to characterize
compared to their classical counterparts. At a classical
critical point, thermodynamic quantities typically di-
verge; the associated critical exponents historically
played a central role in our eventual understanding of
scaling and universality. Some of these divergences, how-
ever, have to disappear at a QCP: There are constraints
placed by the third law of thermodynamics due to the
very fact that the transition takes place at zero tempera-
ture. Here we show that the Grüneisen ratio [1,2] diverges
at any QCP, in a way that provides a novel thermo-
dynamic means of probing quantum phase transitions.

We define the Grüneisen ratio � [1–3] in terms of the
molar specific heat cp � T

N
@S
@T jp and the thermal expan-

sion � � 1
V
@V
@T jp;N � � 1

V
@S
@p jT;N:

� �
�
cp

� �
1

VmT
@S=@p
@S=@T

; (1)

where S is the entropy and Vm � V=N the molar volume.
In ordinary situations, pressure dependences are regular
and a finite Grüneisen ratio is expected as is indeed
observed in all previous measurements of this quantity
in the literature. Such a regular dependence is typically
described by assuming that the system is dominated by a
single energy scale E� (e.g., the Fermi energy in a metal or
the Debye energy if acoustic phonons dominate), so the
molar entropy takes the form S=N � f�T=E��. The
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given by [1,2,4,5] � � 	1=�VmE��
�@E�=@p�. However,
this formula already suggests that a diverging � can be
expected when some energy scale E� vanishes as it hap-
pens at a QCP.

Divergence of the Grüneisen ratio at QCPs.—A quan-
tum critical point is reached in a singular fashion by
tuning some external parameter and, in general, this
external parameter is thermodynamically coupled to
pressure. In the low temperature limit, the singular terms
of S and T in Eq. (1) cancel out leaving � to depend only
on singularities associated with the pressure p. As the
pressure controls the QPT, such a singularity always
exists and the Grüneisen ratio diverges at any QCP. This
divergence is entirely determined by the scaling dimen-
sion of the control parameter, which is the most relevant
operator to which the pressure couples. As shown below,
this leads to a T dependence, �� 1=T1=�z [see Eq. (8)]. In
other words, the temperature exponent of the Grüneisen
ratio provides a direct means to measure �z and, as a
result, characterize a QCP. Put in a slightly different way,
the thermal expansion contains valuable information
complementary to that obtained from the specific heat:
While cp measures the response to T (y axis in Fig. 1), �
describes the response to the tuning parameter of the
QPT, the second relevant variable at a QCP (x axis in
2003 The American Physical Society 066404-1
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Fig. 1). This has to be contrasted with a classical phase
transition. There, generically, only one relevant operator
exists to which both T and p couple. Accordingly, � will
be constant close to a classical transition.

To observe the singular behavior of � or the thermal
expansion, the pressure has to couple sufficiently strongly
to the critical dynamics. This is, for example, the case in
heavy fermion compounds where the intricate competi-
tion between magnetic interactions and the Kondo effect
can be tuned by pressure, doping, or magnetic field to
yield a QPT, typically from a metallic antiferromagnet to
a metallic paramagnet. The high sensitivity to pressure
arises from the exponential dependence of the Kondo
temperature on system parameters. Whether the transi-
tions in these systems conform to the Gaussian picture
associated with T � 0 spin-density wave (SDW) transi-
tions [6,7] or are non-Gaussian as in a locally quantum
critical point [8] is a question of great current interest.

If the control parameter of the QPT is not pressure but
an external magnetic field H, the role of the Grüneisen
ratio is played by the ratio of the T derivative of the
magnetization M (per mole) to the molar specific heat,
for either fixed pressure or fixed volume,

�H � �
�@M=@T�H

cH
� �

1

T
�@S=@H�T
�@S=@T�H

�
1

T
@T
@H

�������S: (2)

It can be determined directly from the magnetocaloric
effect —the change of temperature in response to an
adiabatic (S � const) change of H.

In the following, we go beyond these general consid-
erations by carrying through (i) a more detailed analysis
based on the assumption of scaling and (ii) a model study
on the spin-density-wave (SDW) QCPs in metallic sys-
tems. The latter is a model system that is above or equal to
the upper critical dimension, so corrections to scaling are
important; it is of direct interest in comparing with ex-
periments in heavy fermion compounds.

Scaling analysis.—Close to any QCP, the correla-
tion length � diverges as a function of a control parame-
ter r, �� jrj��, where, e.g., r � �p� pc�=pc or r �
�H �Hc�=Hc. Correspondingly, a typical correlation
(imaginary) time, �� � �z, diverges as the QCP is ap-
proached. The ‘‘dynamical critical exponent’’ z depends
on the dynamics of the order parameter and relates time
and length scales.

If one assumes that the critical behavior is governed by
� and �� (a more careful discussion of this assumption is
given below), the critical contribution to the free energy
per mole, Fcr � F� Freg, can be cast into the following
standard scaling ansatz (using hyperscaling):

Fcr
N

� ��0r��d�z� ~ff
�
T

T0r
�z

�

� ��0

�
T
T0

�
�d�z�=z

f
�

r

�T=T0�1=��z�

�
; (3)

where �0 and T0 are nonuniversal constants, while f�x�
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and ~ff�x� are universal scaling functions. Obviously,
f�x! 0� � f�0� � xf0�0� � � � � is regular as there is no
phase transition at r � 0, T > 0 (see Fig. 1). The limit
~ff�x! 0� � ~ff�0� � cxy0�1 describes the low temperature
behavior of the phases to the left or right side of the QCP
(in general different for r > 0 and r < 0). Note that the
exponent y0 > 0 has to be positive due to the third law of
thermodynamics. It characterizes the power-law behavior
of the specific heat cp � Ty0 , e.g., y0 � 1 for a Fermi
liquid, y0 � 2 for a d-wave superconductor in
d � 2, or y0 � d and d=2 for an insulating antiferromag-
net and ferromagnet, respectively.

Thermodynamical quantities are easily obtained from
(3). The critical contribution ccr to the specific heat at
r � 0 is given by

ccr�T; r � 0� �
�d� z�d

z2
�0
T0
f�0�

�
T
T0

�
d=z
; (4)

and for T ! 0, r � 0,

ccr�T ! 0; r� �
�0cy0�y0 � 1�

T0

�
T
T0

�
y0
r��d�y0z�: (5)

Similarly, in the case of a pressure tuned QCP with
r � �p� pc�=pc, the critical contribution �cr to the ther-
mal expansion reads

�cr�T; r � 0� � �
d� z� 1

�

z
�0f0�0�
T0pcVm

�
T
T0

�
	d��1=��
=z

;

(6)

and, for r � 0,

�cr�T ! 0� � �
�0�y0 � 1�c��d� y0z�

T0Vm

r��d�y0z�

pcr

�
T
T0

�
y0
:

(7)

The thermal expansion is more singular than the specific
heat leading to a Grüneisen ratio,

�cr�T; r � 0� �
�cr
ccr

� �GTT
�1=��z�; (8)

where the prefactor GT � f	�d� z� 1=��zf0�0�
=
	�d� z�df�0�
g	T1=��z�

0 =�pcVm�
 contains some nonuniver-
sal parameters (pc and T0). We reach the important con-
clusion that the temperature exponent of the Grüneisen
ratio is equal to 1=�z.

In the other limit T ! 0, r � 0, we obtain the universal
result

�cr�T ! 0; r� � �Gr
1

Vm�p� pc�
: (9)

Remarkably, even the (generally unknown) scaling func-
tions cancel out in the amplitude Gr, leaving only a
combination of critical exponents and the dimensionality:

Gr �
��d� y0z�

y0
: (10)
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Note that the universality of this prefactor is connected to
the third law of thermodynamics—a finite residual en-
tropy per volume (y0 � 0) would spoil this result.

It is rather difficult to measure thermal expansion in-
side a pressure cell. However, in many systems dop-
ing acts similar to ‘‘chemical pressure.’’ If doping x
and pressure p can be quantitatively related, p� pc �
c�x� xc�, a measurement of � for different samples at
ambient pressure can be used to check the prediction (9)
quantitatively. For generic tuning parameters, we need to
substitute �@r=@p� for 1=pc in Eqs. (6) and (7) and mod-
ify Eqs. (8) and (9) accordingly.

Similarly, for a QCP tuned by magnetic field [r �
�H �Hc�=Hc], one obtains the following for the magne-
tocaloric effect:

�H;cr�T ! 0; r� � �
�@M=@T�H

ccr
� �Gr

1

H �Hc
: (11)

Again, in the T ! 0 limit, the prefactor (10) is universal.
The T dependence of �H;cr at r � 0 is also given by (8).

It is interesting to compare the above with the case of a
quantum critical line, where the critical behavior is not
restricted to a single point but to a finite (pressure)
interval. Here, since only marginal and irrelevant opera-
tors exist for T � 0, �cr can diverge at most logarithmi-
cally:

�cr �� logT: (12)

Conversely, if � diverges algebraically for T ! 0, a criti-
cal line scenario can be excluded.

Applicability of scaling.—The applicability of the scal-
ing results (3)–(11) depends on a number of assumptions.
Most importantly, in an actual experiment not �cr �
�cr=ccr but � � �=c is measured and sometimes non-
critical contributions can dominate (for an example see
below). To verify Eqs. (8) and (9) in a situation where ccr
is subleading, one would have to subtract carefully the
noncritical contributions to the specific heat.

Generally, the scaling ansatz (3) holds only below the
upper critical dimension (d� z < 4 within �4 theories).
At the upper critical dimension, logarithmic corrections
to scaling arise. Above the upper critical dimension, the
scaling argument can be spoiled by the presence of so-
called ‘‘dangerously irrelevant operators’’: the free en-
ergy is a singular function of irrelevant variables. Explicit
calculations (see below) for the case of an SDW transition
[6,7] show that on the paramagnetic side the irrelevant
operator at most leads to logarithmic corrections.

A more subtle question is whether one of the basic
assumptions underlying the scaling approach (3) holds:
Is there a single diverging time scale close to the QCP?
For example, in a nearly magnetic metal the answer to
this question is not obvious as there are at least two types
of low-energy degrees of freedom: magnetic fluctuations
and fermionic quasiparticles [9–11]. This can indeed lead
to a breakdown of simple scaling relations as shown, e.g.,
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by Belitz et al. [9]. In the case of a local critical point
induced by a (nonlocal) magnetic transition, as has been
suggested by one of the authors in [8], two scaling di-
mensions need to be considered: one associated with the
tuning of the long-wavelength fluctuations and the other
with the tuning of the local fluctuations.

SDW transitions.—We now turn to more specific cal-
culations at SDWquantum critical points, for two reasons.
First, they allow us to address a number of questions
concerning the scaling results: How do corrections to
scaling arise at the upper critical dimension? Are the
scaling results valid above this dimension? What hap-
pens, if the prefactor d� y0z in Eqs. (9) and (11) van-
ishes? Second, our calculations are important for the
purpose of assessing the relevance of SDW QCPs to the
magnetic quantum phase transitions in heavy fermion
compounds.

Our starting point is the Ginzburg-Landau-Wilson
functional of Hertz [6]:

S	�
 �
X
q;i!n

�
"� q2 �

j!nj
�q

�
j�q;i!n j

2 � S�4�;

S�4� � u
Z %

0
d�

Z
ddr	��r; ��
4;

(13)

with �q � �0q
z�2, where z � 2 for an antiferromagnetic

SDW transition in a metal. The z � 3 theory may be used
to describe the critical end point of a metamagnetic
first order transition [12] in d � 2; 3. In the case of a
ferromagnetic QCP in d � 3, the model (13) with z � 3 is
valid only up to logarithmic corrections and breaks down
in d � 2 [13]. For commensurate 2D magnetism coupled
to 2D fermions, there are additional singularities in the
fermion-collective-mode coupling [11]; these singulari-
ties are absent when the fermions are taken to be 3D [14].
Following the renormalization group scheme adopted by
Millis [7,15] we have calculated the thermal expansion
and the Grüneisen ratio for d � 2; 3 and z � 2; 3 on the
nonmagnetic side of the phase diagram, " � "c. Details
of the calculation will be reported elsewhere.

The results are summarized in Tables I and II. Up to
logarithmic corrections, the results obey the scaling
forms (3)–(11) with � � 1=2, y0 � 1. Note that for
d � z the prefactor in (7) and (9) and (11) vanishes. The
1=r dependence of �cr for d � z arises from a T2 log1=r
correction to Fcr not captured by scaling. For the quan-
tum critical regime in d � 1=� � 2, the thermal expan-
sion is logarithmic. The argument of the logarithm is a
power of T for d� z > 4 and is itself logarithmically
dependent on T for d� z � 4; these features reflect the
dangerously irrelevant or marginal nature of the quartic
coupling u.

In addition to the critical contributions, the measured
quantities also contain noncritical background com-
ponents. We list here the full results for the purpose
of comparisons with experiments in heavy fermion
compounds undergoing an antiferromagnetic transition
066404-3



TABLE II. Results for SDW-QCPs in the quantum critical
regime r � "� "c � T2=z (cf. Table I).

d � 2, d � 3, d � 3, d � 2,
z � 3 z � 2 z � 3 z � 2

�cr� log1T T1=2 T1=3 loglog1T
ccr� T2=3 �T3=2 T log1T T log1T

�r;cr� T�2=3 log1T �T�1 �T2=3 log1T�
�1 loglog1T

T log1T

TABLE I. Results for SDW-QCPs in the Fermi liquid regime
r � "� "c � T2=z. For a pressure tuned QCP, one obtains
�cr � �dr=dp��r;cr=Vm using r � �p� pc�=pc, and �H;cr �
�dr=dH��r;cr for r � �H �Hc�=Hc. Nonuniversal prefactors
of �cr and ccr are not shown. The prefactors of �cr and �H;cr
are (up to the logarithmic correction for d � z) universal. Note
that for d � 3, z � 2 the specific heat is dominated by a
noncritical contribution cp � T.

d � 2, d � 3, d � 3, d � 2,
z � 3 z � 2 z � 3 z � 2

�cr� Tr�3=2 Tr�1=2 Tr�1 Tr�1

ccr� Tr�1=2 �Tr1=2 T log1r T log1r
�r;cr � �2r��1 ��2r��1 �r log1r�

�1 �r log1r�
�1
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(z � 2). Consider first d � 3. At the QCP (r � 0),

� � a1T1=2 � a2T; (14)

where the a2 term comes from the (fermionic) back-
ground contribution. However, approaching the QCP in
the Fermi-liquid regime

� � �a1=r1=2 � a2�T: (15)

For d � 2 and z � 2, we have at the QCP (r � 0)

� � a1 log
�
b log

T0
T

�
�a2T; (16)

and, in the Fermi-liquid regime approaching the QCP,

� � �a1=r� a2�T: (17)

In two dimensions, the thermal expansion at r � 0
diverges in the zero-temperature limit in sharp contrast
to the textbook statement that ��T ! 0� � 0. Still, it is
straightforward to show that our results satisfy the third
law of thermodynamics. As � � ��1=V�@S=@p, we can
write, for generic pressure,

S�p; T� � S�pc; T� �
Z p�

pc

�V dp�
Z p

p�

�V dp; (18)

where p� characterizes the crossover between the QC and
FL regimes. S�p; T ! 0� ! 0 due to a vanishing integra-
tion region [�p� � pc� / T] over which � is divergent.

We now briefly discuss the experimental implications
of our results. Many heavy fermion compounds have long
been known to show a Grüneisen ratio that increases to a
very large value as temperature is lowered [5,16].
Experiments are also becoming available in the heavy
fermion metals tuned to an antiferromagnetic quantum
critical point, making possible a systematic comparison
with our theory [17]. It is hoped that the present paper
will stimulate similar measurements in other kinds of
(real and putative) quantum critical materials.

In conclusion, we argue that the Grüneisen ratio and
the magnetocaloric effect are divergent at any QCP. In
addition, they can be used to measure the scaling dimen-
066404-4
sions and to check the very existence of a quantum
critical point.
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