
P H Y S I C A L R E V I E W L E T T E R S week ending
8 AUGUST 2003VOLUME 91, NUMBER 6
Soft Fermi Surfaces and Breakdown of Fermi-Liquid Behavior
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Electron-electron interactions can induce Fermi surface deformations which break the point-group
symmetry of the lattice structure of the system. In the vicinity of such a ‘‘Pomeranchuk instability’’ the
Fermi surface is easily deformed by anisotropic perturbations, and exhibits enhanced collective
fluctuations. We show that critical Fermi surface fluctuations near a d-wave Pomeranchuk instability
in two dimensions lead to large anisotropic decay rates for single-particle excitations, which destroy
Fermi-liquid behavior over the whole surface except at the Brillouin zone diagonal.
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sions. Order parameter fluctuations thus suppress the PI
much less than competing instabilities toward states

where �k is a single-particle dispersion, nk�q� �P
�c

y ck�q=2;�, and V is the volume of the system.
Recently a number of authors pointed out that the
Coulomb interaction between electrons in a metal can
lead to Fermi surface deformations which break the
orientational symmetry of the system. Referring to a
stability criterion for normal Fermi liquids by
Pomeranchuk [1], we use the term ’’Pomeranchuk insta-
bility’’ (PI) for such symmetry-breaking Fermi surface
shifts. Deformations of dx2�y2 type, for which the Fermi
surface expands along the kx axis and shrinks along the
ky axis (or vice versa), have been found for various model
Hamiltonians on a two-dimensional square lattice: t-J
[2], Hubbard [3–5], and extended Hubbard model [6].
For a Fermi level close to the van Hove singularity the
PI occurs already in the weak-coupling regime, where
perturbative methods may be applied. Symmetry-broken
Fermi surfaces in fully isotropic (not lattice) two- and
three-dimensional Fermi liquids have also been consid-
ered [7]. From a pure symmetry-group point of view a PI
leads to a ‘‘nematic’’ electron liquid as defined by
Kivelson et al. [8] in their discussion of a possible corre-
spondence between electron states in doped Mott insula-
tors and liquid crystal phases.

Symmetry-breaking Fermi surface deformations gen-
erally compete with other instabilities, but may also
coexist with other types of symmetry-breaking order.
For example, a superconducting state with a d-wave
deformed Fermi surface [9] is stabilized in the two-
dimensional Hubbard model with a sizable next-to-
nearest neighbor hopping amplitude and an electron
density near van Hove filling, at least at weak-coupling
[5]. Superconducting nematic states have also been con-
sidered as one among several possibilities in a general
symmetry classification by Vojta et al. [10]. In the follow-
ing we will, however, focus on symmetry-breaking Fermi
surface deformations in an otherwise normal state.

For electrons on a lattice, the PI breaks only a discrete
symmetry, the point-group symmetry of the lattice.
Hence, no Goldstone mode exists and symmetry-broken
states can exist also at finite temperature in d � 2 dimen-
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which would break a continuous symmetry. In the ground
state a PI can be driven as a function of the electron
density or other control parameters, leading to a quantum
critical point at the transition between the symmetric and
symmetry-broken states, provided that no first order tran-
sition occurs.

An interacting electron system in the vicinity of a PI is
characterized by a ‘‘soft’’ Fermi surface, which can be
deformed very easily, that is at low energy cost. In this
Letter we show that strong dynamical fluctuations of such
a soft Fermi surface affect physical properties of the
system very strongly, and lead, in particular, to a very
fast decay of single-particle excitations. The anisotropy
of the Fermi surface fluctuations in a lattice system leads
to a pronounced anisotropy of the single-particle decay
rate. For dx2�y2-wave fluctuations the decay is maximal
near the kx and ky axes and minimal near the diagonal of
the Brillouin zone.

The ‘‘softness’’ of a Fermi surface can be quantified by
the Fermi surface susceptibility [3]

�kFk0
F
�
	skF
	�k0

F

; (1)

which measures the Fermi surface shifts 	skF for small
momentum dependent shifts of the chemical potential
	�k0

F
at points k0

F on the Fermi surface. Close to a PI
one of the eigenvalues of the matrix �kFk0

F
diverges, and

the corresponding eigenvector describes the shape of the
incipient Fermi surface deformation.

It is intuitively plausible that critical Fermi surface
fluctuations will strongly affect single-particle excita-
tions and as a consequence the low energy properties of
the system. To explore the resulting physics, we define and
analyze a phenomenological lattice model with an effec-
tive interaction chosen such that a PI occurs, but no other
instabilities. The model Hamiltonian reads

H �
X
k;�

�k nk� �
1

2V

X
k;k0;q

fkk0 �q� nk�q� nk0 ��q�; (2)

k�q=2;�
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Since the PI is driven by interactions with small momen-
tum transfers, that is forward scattering, we choose a
coupling function fkk0�q� which contributes only for
relatively small momenta q. This suppresses other insta-
bilities such as superconductivity or density waves. We
emphasize that this model is adequate only if Fermi
surface fluctuations are the dominant fluctuations in the
system. Otherwise it would have to be supplemented by
other interactions with large momentum transfers. The
interplay of Fermi surface and other fluctuations opens a
wide field for investigations in the future.

For an analytical treatment we assume that the mo-
mentum dependence of the coupling function in (2) is
separable, that is

fkk0 �q� � g�q� dk dk0 : (3)

Although the above model can be defined in any dimen-
sion, we now focus on the particularly interesting case of
a two-dimensional system on a square lattice. To generate
a PI with dx2�y2 symmetry, the form factors dk must have
that symmetry, such as dk � coskx � cosky, and g�q� has
to be negative, at least for q ! 0. The resulting Landau
function fkk0 � fkk0 �0� captures qualitatively the most
pronounced features of the Landau function obtained
from renormalization group calculations [3] and pertur-
bation theory [11] for the two-dimensional Hubbard
model near van Hove filling. In particular, it is repulsive
for momenta near two different van Hove points and
attractive for momenta near a common one.

We compute the two-particle vertex function � from f
by summing the series of bubble chains sketched in Fig. 1.
By virtue of the separable structure of the interaction, the
series can be summed algebraically yielding

�kk0 �q; !� �
g�q�

1� g�q��d�q; !�
dkdk0 ; (4)

where �d is the particle-hole bubble with a form factor
dk at the vertices, that is

�d�q;!� � �
Z d2p

�2��2
f��p�q=2� � f��p�q=2�

!� ��p�q=2 � �p�q=2� � i0�
d2p:

(5)

Here f is the Fermi function. For small q and ! the
d-wave bubble has the following asymptotic behavior:
. . .+
ff

Γ   = +
f

FIG. 1. The series of bubble chains contributing to the two-
particle vertex �.
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�d�q; 0� � �NFd � a�q̂q� q2 �O�q4� and Im�d�q; !� !
�c�q̂q�!=q for q;!! 0 and !=q! 0, where NFd > 0
is a weighted density of states, with each state at the
Fermi level weighted by the squared form factor d2kF ,
while a�q̂q� and c�q̂q� are real coefficients depending only
on the direction q̂q of q, but not on its length. The coef-
ficient c�q̂q� is always positive, but the sign of a�q̂q� depends
on q̂q and on the choice of �k, dk, and �.

The PI sets in when the denominator of Eq. (4) vanishes
at zero frequency and vanishing momenta, that is
limq!0 g�q��d�q; 0� � �g�0�NFd � 1 at the critical
point. We assume that the q dependence of g�q� is such
that g�q��d�q; 0�< 1 for q � 0 at that point. Otherwise
an instability with a finite q vector would set in first.
For a small q vector this would lead to a phase where
the symmetry-breaking Fermi surface deformations are
slowly modulated across the system.We leave this case for
future studies.

At the critical point the two-particle vertex has the
following asymptotic form for small q,!, and small!=q:

�kk0 �q; !� 

dkdk0

ic�q̂q�!=q�  �q̂q�q2
; (6)

with  �q̂q� � a�q̂q� � NFd g
00�q̂q�=g�0�, where g00�q̂q� is the

second derivative of g�q� with respect to q for q! 0.
The denominator of the vertex has the same form as for
other familiar critical points in metals, namely, at the
boundary to ferromagnetic [12,13] or phase separated
[14] states. Peculiar to the d-wave PI are the form factors
in the numerator.

We stress that the PI obeys the symmetry conditions for
a continuous phase transition, since odd powers of the
order parameter are excluded by symmetry from the
corresponding Landau theory, in contrast to the case of
phase separation, where cubic terms usually drive a first
order transition (except for special cases where the cubic
term is tuned to zero). Note also that the Pomeranchuk
instability is not inhibited by long-range Coulomb forces,
since volume conserving Fermi surface deformations do
not generate charge inhomogeneities.

To estimate the decay rate for single-particle excita-
tions in the presence of critical Fermi surface fluctuations
near the quantum critical point, we have computed the
imaginary part of the self-energy to first order in
�kk0 �q; !�, evaluating the Feynman diagram in Fig. 2.
For momenta on the Fermi surface, the result is
Γ

Σ  =
FIG. 2. Feynman diagram relating the self-energy � to the
two-particle vertex �.
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Im��kF; �� / d2kF �
2=3 (7)

for small energies � at T � 0 and

Im��kF; 0� / d2kF T
2=3 (8)

at low finite temperatures. Note that the integral leading
to the above result is dominated by small momentum
transfers q and!� vkFq, thus justifying the asymptotic
expansion of the vertex function. Furthermore, the domi-
nant contributions to Im� at the Fermi vector kF come
from (small) q vectors that are tangential to the Fermi
surface at kF.

Not unexpectedly, the decay rate has the same energy
dependence as for the quantum critical point near phase
separation in two dimensions [14]. Different is, however,
the d-wave form factor making the decay rate strongly
anisotropic. The decay rate is strongest near the van Hove
points, while the leading terms vanish on the diagonal of
the Brillouin zone. Subleading terms will produce at least
conventional Fermi-liquid decay rates (T2 lnT) on the
diagonal, but faster decay (intermediate between T2=3

and T2 lnT) may be obtained due to higher order processes
and interactions with large momentum transfers, which
couple different parts of the Fermi surface.

The singular self-energy in the critical region will
drastically modify the one-particle propagator at low
energies. However, this does not invalidate the calculation
of the two-particle vertex from bubbles with bare propa-
gators, since singular self-energy corrections generated
by strong forward scattering are canceled by correspond-
ing vertex corrections in the polarization bubble [15]. A
more subtle point is whether higher order corrections to
the self-energy contribution in Fig. 2 modify the power
laws [7,8] for the decay rate. The same question has been
discussed at length for fermions coupled to a gauge field
[15], where the lowest order calculation also yields a
power law with exponent 2=3 [16]. A detailed analysis
by Altshuler et al. [17] indicated that this result is not
changed by other terms. A recent renormalization group
analysis further supported the validity of the leading
power law for the gauge theory, and also for the critical
point near phase separation in two dimensions [18]. Even
if the above power law would be modified by higher order
corrections, it is clear that Fermi-liquid behavior cannot
be restored, and the decay rate will remain large and
anisotropic in any case.

A strongly anisotropic decay rate following a power
law with exponent 2=3 has recently been derived for an
isotropic continuum (not lattice) version of model (2) [7].
That result was obtained for the symmetry-broken ‘‘ne-
matic’’ phase, and the anisotropy of the decay rate arises
from the anisotropy of the symmetry-broken state and its
collective modes. In the symmetric phase of an isotropic
liquid the decay rates are of course isotropic. At the
quantum critical point the decay rate of the isotropic
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liquid also obeys a power law with exponent 2=3, but
now isotropically over the whole Fermi surface.

Could soft Fermi surfaces and critical Fermi surface
fluctuations play a role in cuprate superconductors?
Because of the coupling of electron and lattice degrees
of freedom a symmetry-breaking Fermi surface deforma-
tion is generally accompanied by a lattice distortion, and
vice versa. Structural transitions which reduce the lattice
symmetry of the cuprate-planes are quite frequent in
cuprates. Close to a PI of the electronic system, electronic
properties can be expected to react unusually strongly to
slight lattice distortions. Such ‘‘overreactions’’ of elec-
tronic properties have indeed been observed in several
cuprate compounds [19]. In particular, a slight ortho-
rhombicity of the lattice structure would lead to a rela-
tively strong orthorhombic distortion of the Fermi
surface. Yamase and Kohno [20] invoked this idea to
explain peculiarities of magnetic excitations in cuprates.

Large Fermi surface fluctuations could be at least par-
tially responsible for the non-Fermi-liquid behavior ob-
served in cuprates at optimal doping. In our model
calculation we have obtained a strongly anisotropic
anomalously large decay rate for single-particle excita-
tions. Large anisotropic decay rates have been frequently
inferred from the linewidth observed in photoemission
experiments on optimally doped cuprates [21]. However,
recent experiments with higher resolution revealed that
bilayer splitting of the bands has to be taken into account
in the data analysis, such that the intrinsic linewidth near
the van Hove points may be considerably smaller and less
anisotropic than previously expected [22]. As to the tem-
perature dependence of the decay rate, it is presently hard
to reliably discriminate a T-linear from a T2=3 behavior of
the intrinsic linewidth extracted from the experimental
data. Concerning transport, an anisotropic scattering rate
with nodes on the diagonal can very naturally account for
the pronounced anisotropy between intraplane and inter-
plane mobility of charge carriers, as pointed out by Ioffe
and Millis [23] in their phenomenological ‘‘cold spot’’
scenario. According to their idea, the intraplane transport
is dominated by quasiparticles with a long lifetime near
the diagonal of the Brillouin zone, while these carriers
are not available for interplane transport, since transverse
hopping amplitudes vanish on the diagonal. To analyze
transport properties near a PI one has to face the noto-
rious difficulties of transport theory in a quantum critical
regime. Even for rough estimates of temperature depen-
dences within a semiclassical Boltzmann approach one
would have to compute subleading corrections to the
decay rates, since those limit the lifetime of excitations
on the Brillouin zone diagonal, and thus the inplane
conductivities. Furthermore, regular interactions or in-
teractions peaked at finite q-vectors (leading to ‘‘hot
spots’’ on the Fermi surface) should also play a role,
and may lead to an interesting but complicated interplay
with Fermi surface fluctuations.
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Since the PI breaks the orientational symmetry of the
lattice, it is natural to consider a possible connection with
the tendency towards stripe formation, which has been
extensively discussed in the context of cuprate supercon-
ductors [24]. Stripes also break the translation invariance
in addition to orientational symmetry, and their forma-
tion requires interactions with large momentum transfers,
such as antiferromagnetic interactions. The possibility of
direct transitions between states with broken orienta-
tional order and stripe states, which has been envisaged
already by Kivelson et al. [8], is an interesting subject for
future studies.

In summary, an electron system close to a PI is
characterized by a soft Fermi surface, which can react
strongly to a slight change of the lattice structure, and
exhibits strong collective Fermi surface fluctuations. In
two-dimensional systems these fluctuations lead to large
anisotropic decay rates for single-particle excitations and
thus to a breakdown of Fermi-liquid theory. It will be
interesting to further explore the consequences of
Pomeranchuk criticality, especially for charge and heat
transport, for magnetism, and for superconductivity.
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