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Large Scale Structures in Rayleigh-Bénard Convection at High Rayleigh Numbers
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Direct numerical simulations of Rayleigh-Bénard convection in a plane layer with periodic boundary
conditions at Rayleigh numbers up to 107 show that flow structures can be objectively classified as large
or small scale structures because of a gap in spatial spectra. The typical size of the large scale structures
does not always vary monotonically as a function of the Rayleigh number but broadly increases with
increasing Rayleigh number. A mean flow (whose average over horizontal planes differs from zero) is
also excited but is weak in comparison with the large scale structures. The large scale circulation
observed in experiments should therefore be a manifestation of the large scale structures identified here.
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direct numerical simulation thermal convection at Ra up
to 107 in plane layers. Periodic boundary conditions are

bzz is the unit vector in the z direction and p is the pres-
sure. The velocity field can be uniquely represented by a
The investigation of convection at high Rayleigh num-
ber Ra, both experimental and numerical, has for prac-
tical reasons mostly been limited to convection in boxes
of aspect ratio near unity [1–4]. On the other hand,
applications frequently invoked as a motivation for these
studies involve geometries of very large aspect ratios as,
for example, atmospheric convection. The presence of
lateral walls should, however, be decisive for the large
scale circulation.

It has been noted in experiments with containers of
aspect ratio around one that a coherent flow encompassing
the entire box persists up to the highest Ra reached [4–6].
The fluid flows horizontally in one direction along the
bottom plate and in the opposite direction near the top
plate with connecting flows along the side walls. Even in
containers of larger aspect ratio, some authors have ob-
served a single circulation running through the container
limited in its size only by lateral walls [7]. The presence
of this ‘‘wind’’ has played a major role in theories at-
tempting to explain the Rayleigh number dependence of
the Nusselt number [8,9]. Less effort has been made to
explain where the large scale circulation comes from in
the first place.

According to one point of view, the rolls which develop
at low Ra near the onset of convection continually in-
crease their size as Ra is increased and continue to exist in
an averaged sense at even the highest Ra reached in
experiments. This view is supported by measurements
in air [10]. Another hypothesis holds that the large scale
circulation is a genuine high Rayleigh number effect in
which plumes erupting from the boundary layers interact
with the mean shear which tilts the plumes. The tilted
plumes in turn generate a Reynolds stress which main-
tains the shear against dissipation [7].

In order to shed light on these issues, we investigate by
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used in the horizontal directions. The ratio of the perio-
dicity length and the vertical extent of the layer is typi-
cally 10, in some runs up to 20.

Consider an infinitely extended plane layer of height d
filled with fluid of viscosity �, thermal diffusivity �,
density �, and thermal expansion coefficient �. A
Cartesian coordinate system is chosen such that the gravi-
tational acceleration g acts perpendicular to the bounda-
ries of the layer in the negative z direction and that the
bottom boundary is located at z � 0. The temperature at
the bottom exceeds the temperature at the top by �T. The
boundary conditions for the velocity field are no slip at
both boundaries. Periodic boundary conditions are im-
posed in the x and y directions with periodicity lengths lx
and ly. The aspect ratio A is defined as A � lx=d � ly=d.
Using d, d2=�, �T, and ��2=d2 as units of length, time,
temperature, and pressure, respectively, one obtains non-
dimensional equations for the velocity v�r; t� and the
temperature T�r; t� which involve in the Boussinesq ap-
proximation just two additional control parameters: the
Rayleigh number Ra � g�d3�T=���� and the Prandtl
number Pr � �=�. When the fluid is at rest, the (dimen-
sionless) temperature depends only on z and varies as
T�z � 0� � z. In the general case, it is convenient to
specify the temperature through the deviation � from
the static profile: T�r; t� � ��r; t� � T�z � 0� � z. The
equations of motion for v�r; t� and ��r; t� are

@tv� �v � r�v � �rp� Prr2v� Ra Pr�bzz; (1)

r � v � 0; (2)

@t�� v � r�� v � bzz � r2�; (3)

��z � 0� � ��z � 1� � v�z � 0� � v�z � 1� � 0: (4)
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FIG. 1. dvz�vz� as a function of wavelength � in the midplane
(z � 0:5) for Pr � 7 and Ra � 105 (dashed line) and 2:5� 105

(continuous line).
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poloidal scalar ��r; t�, a toroidal scalar  �r; t�, and a
mean flow U�z; t�:

v � r�r��bzz�r�  bzz� U: (5)

It follows directly from the boundary conditions and the
definition of U that the z component of U must be zero. U
is thus a toroidal flow. However, the corresponding toroi-
dal scalar varies linearly in x and y and is unbounded. If  
is required to stay finite and has to obey periodic bound-
ary conditions, it is necessary to include U in the decom-
position of v [11].

U describes a shearing motion extending horizontally
to infinity. The word ‘‘mean flow’’ is reserved for such an
infinitely extended motion in the theoretical literature on
large aspect ratio convection [11,12]. A mean flow U
cannot exist in an experiment because of side walls. It is
nonetheless important to decide by means of numerical
simulation whether a mean flow of significant amplitude
exists in an infinite layer. If the dynamics of convection
are such that they excite a mean flow in an infinite layer,
we expect to find a large scale circulation encompassing
the whole experimental cell in cells of any aspect ratio.
Suppose on the other hand that U is negligible even in
an infinite layer and that the flow at large scales is ap-
proximately described as parallel rolls. In an experiment
of sufficiently large aspect ratio, we will then find several
of these rolls instead of a single circulation filling the
whole cell.

Equations of motion for�,  , and U are obtained from
the z component of the curl of the curl of (1), the z
component of the curl of (1), and the average over hori-
zontal planes of (1), respectively. These equations are
solved numerically. A spectral method [13,14] is used
which discretizes space with Chebychev polynomials in
the z direction and with Fourier modes in the x and y
directions. Dealiasing with the 2=3 rule was imple-
mented. The time marching procedure is a second order
Adams-Bashforth scheme for the advection and buoy-
ancy terms coupled to a Crank-Nicolson scheme for the
diffusive terms. An adaptive time step is used to speed up
the transients. All computations have been started from
random noise as initial conditions and have been run for
several tens of convective time scales � � �2Ekin�

�1, with
Ekin � A�2

R
A
0

R
A
0

R
1
0 dxdy dzv

2=2. Spatial resolution
was up to 65 Chebychev polynomials and 5122 grid points
in horizontal planes.

Spectral analysis is the most straightforward tool to
classify convective structures according to their length
scale. One can compute spectra of various quantities
which all lead to the same conclusions. We present the
spectral distribution of the advective heat transport H �
A2hvz�i through a horizontal plane. h� � �i denotes the
average over the plane. Expressed in terms of the discrete
Fourier transforms F vz (vertical velocity) and F� (tem-
perature), the heat transport H reads
064501-2
H �
X
i

��

( X
k with �i��2��=jkj<�i�1

RefF �
vz�k�F��k�g

��NxNy

)
:

(6)

Nx and Ny are the number of Fourier modes in x and y
directions, respectively, k � �kx; ky� is a wave vector in
the horizontal plane, and �� � �i�1 � �i. The expres-
sion in the curly braces represents the spectral densitydvz�vz� of the advective heat transport. dvz�vz� is assumed
constant in the intervals ��i; �i � ��� and is shown in
Fig. 1 for �� � 0:1.

All spectra show a gap which allows us to classify
wavelengths as ‘‘large’’ or ‘‘small’’ scales. The spectral
content of the small scales increases with increasing Ra
and in planes closer to the boundaries. The maximum ofdvz�vz�i in the range of the small scales shifts towards
smaller � with increasing Ra. The wavelength of the
maximum at large �, �max, most conveniently character-
izes the large scales. �max can assume only a few different
discrete values due to the periodic boundary conditions.
For instance, the largest possible values for �=A are 1,
1=

���
2

p
, 1=2, 1=

���
5

p
, 1=

���
8

p
, . . . without any values in be-

tween. �max therefore varies in steps as a function of Ra or
Pr. A smoother variation is obtained if one considers an
average wavelength ��� �

P0
�dvz�vz�=P0 dvz�vz�, where

P0
de-

notes the sum over all wavelengths between �max=
���
2

p
and

�max

���
2

p
. �max and ��� never differ by more than 10%.

Figure 2 shows �max as a function of Ra in air, i.e., Pr �
0:7. Both the experimental and numerical values in-
crease in steps with increasing Ra because of the limited
number of possible values of �max in any given geome-
try. The numerical data are on average somewhat smaller
than the experimental numbers. One observes at any rate
a general increase of �max with Ra and the �max at the
highest Ra exceeds the aspect ratio of the containers
064501-2
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FIG. 3. ��� as a function of Pr for Re � 105 (triangles) and 106

(diamonds). Stars are experimental data from Refs. [10,15].
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FIG. 2. �max as a function of Ra for Pr � 0:7. The full
symbols are numerical results for A � 10; the open symbols
are experimental data compiled in Ref. [10] for rectangular
containers with various aspect ratios.
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customarily used for experiments at large Rayleigh
numbers.
�max coincides with the wavelength of the largest struc-

tures identified visually in, for example, contour plots
of � in the midplane of the layer. Rolls reminiscent of the
convection rolls known from the onset of convection
remain visible in movies of the flow up to the highest
Ra simulated.

In addition to the large scale rolls, a mean flow is also
excited in the simulation (i.e., U � 0), which corresponds
to a structure of infinite wavelength. However, the energy
contained in this mean flow is less than 0:8% of the total
kinetic energy in all investigated cases. The mean flow
has an amplitude much smaller than the modes contrib-
uting to the structure of size �max. The mean flow is also
very time dependent. Its long term average is zero because
the mean flow runs in different directions at different
times. The temporal average of the magnitude of the mean
flow velocity, jUj, is comparable with the rms of the
fluctuations of jUj.

Figure 3 shows ��� as a function of Pr for Ra � 105 and
106 together with experimental data. It is seen that, for
any Ra, ����Pr� goes through a maximum. This fact is
already indicated by the experimental data which are,
however, collected at varying Rayleigh numbers and
aspect ratios, but the presence of such a maximum is
confirmed by the more controlled and systematic numeri-
cal simulations. Another piece of information can be
gleaned from Ref. [16] which reports simulations of 2D
convection at infinite Prandtl number. In this limit, one
finds ��� � 3:3 at Ra � 106. ��� thus asymptotes to a finite
value for Pr ! 1.

In water, Krishnamurti and Howard [7] report a tran-
sition of ��� at Ra � 2� 106. At low Rayleigh numbers,
they observe cellular convection with horizontal length
064501-3
scales comparable with the layer thickness, which is
replaced by randomly appearing transient plumes, as
the Rayleigh number is increased. At Ra � 2� 106, the
plumes start to tilt and a large scale flow with length
scales comparable to the width of the container (aspect
ratio 9.6) is generated. In simulations for Pr � 7 and A �
10, there is no sign of such a transition for Rayleigh
numbers up to 107. The mean flow U exists but it is again
too weak and too erratic to account for the experimental
observations. These computations have been repeated
with small inclinations of the direction of gravity with
respect to the normal to the layer. In another series of
simulations, the Fourier modes were selected such as to
reproduce lateral walls with free slip boundary condi-
tions. None of these ingredients helped in explaining the
transition reported in Ref. [7].

The case Pr � 7 is computationally cumbersome be-
cause it is near a dividing line between two different
forms of convection: Rolls at lower Pr and cellular struc-
tures at higher Pr. Both styles of convection may coexist,
or the flow may switch from one type of flow to the other
in the course of time. Lengthy integrations are thus
necessary at Pr � 7. More accurate results can be ob-
tained at both lower (Fig. 2) and larger Pr (Fig. 4). In
both cases, one observes a general increase of �max or ���
with Ra.

In some experiments [15], the aspect ratio was larger
than can be routinely simulated numerically. It is there-
fore important to probe the sensitivity of the results to the
aspect ratio. At A � 10, Pr � 0:7, and Ra � 106, one finds
�max � 5 and the rolls lie parallel to either the x or y axis,
depending on initial conditions. If A � 10=

���
2

p
is used, the

rolls form an angle of 45� with the coordinate axes thus
preserving �max � 5. At least in this particular example,
a change of the aspect ratio was insignificant.

In summary, it has been shown in this paper that
convective flow contains structures of large but finite
064501-3
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FIG. 4. ��� as a function of Ra for Pr � 30. The dashed
horizontal lines indicate the wavelengths of modes satisfying
the periodic boundary conditions in a box with A � 10.
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size in addition to the fluctuations usually associated with
turbulence. The two types of structures are separated by a
gap in spatial spectra. With increasing Ra, the separation
of scales becomes more pronounced because the small
scales are increasingly excited at high Ra, whereas the
large scales are continuations of the structures already
present in laminar flows. In addition, the spectral gap
becomes wider with increasing Ra because the large scale
structures acquire larger wavelengths, whereas the small
scale structures shift towards smaller wavelengths. It
cannot be decided from our simulations whether the large
scale structures will eventually disappear at yet higher
Ra. The simulations have shown, however, that large scale
structures exist in the range of Ra normally classified as
turbulent and in which even some features of ‘‘hard
turbulence’’ are found [14].

The simulations presented here show that the mean
flow contains little energy. The large scale circulation
detected in experiments is thus better interpreted as a
064501-4
convection roll rather than a mean flow. The large scale
structures at high Ra have a large enough wavelength so
that a single specimen fills experimental boxes typically
in use nowadays. Experiments at larger aspect ratios are
necessary in order to learn more about the large scale
circulation.
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