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Structure and Kinematics in Dense Free-Surface Granular Flow
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We show that the structure of a dense, free-surface boundary layer granular flow is similar to the
structure of a laminar liquid flow: There is a strong component of order (stratification parallel to the
mean flow) superposed with a mild component of disorder (self-diffusion perpendicular to the mean
flow). We also show that the self-diffusion coefficient scales with the mean velocity and propose a model
that relates this scaling to the ordered structure of the flow. Last, we show that the structure of the flow
imprints an oscillatory signature (similar to that found in confined granular flow) on the mean velocity
profile.
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FIG. 1. (a) Schematic of the partially filled rotating drum.
The beads flow only within a thin surficial boundary layer
(whose thickness is exaggerated in the figure) and primarily
parallel to the free surface (from left to right in the x direction).
Outside the boundary layer, the beads move in solidlike rota-
tion with the drum. (b) Part of a typical image with computed
instantaneous velocity vectors (for an experiment with d �
2 mm and ! � 1 rpm). The complete image covers about 3
times as much area as this part. In this and the other images, a
bead diameter spans about 40 pixels. We note that the granular
flow is dense: Except for the beads located at the free surface,
velocities, the boundary layer remains steady and its
surface flat.) Then, we focus a digital camera on the center

the beads appear always to remain in contact with several
neighboring beads.
When a bed of sand is tipped to an angle of about 30
degrees (the angle of repose), the sand in a thin free-
surface boundary layer starts to flow down the surface of
the bed. This type of granular flow occurs in many
industrial processes and natural phenomena [1]. Debris
flows, for example, are vast free-surface boundary layer
granular flows; in California, they pose a formidable
threat to urban areas at the foot of the San Gabriel
mountains, whose ‘‘loose inimical slopes flout the toler-
ance of the angle of repose’’ [2]. Ever since the pioneering
work of Bagnold [3], most experimentalists researching
granular flow have adopted the Eulerian viewpoint. (In
the Eulerian viewpoint, the measurements pertain to
fields defined in a fixed control volume [4].) Although
the study of Eulerian fields, especially the mean velocity
field, has led to many insights into the physics of free-
surface granular flow [5] (and also of confined granular
flow [6]), much remains to be elucidated. To identify a
different path of inquiry into free-surface granular flow,
we note that the alternative, Lagrangian viewpoint, is
often advantageous, especially when seeking to elucidate
the structure of the flow [7]. (In the Lagrangian view-
point, the measurements pertain to individual flowing
particles [4].) Here we start by adopting the Lagrangian
viewpoint. In particular, we focus on the particle trajec-
tories and study what they may reveal about the structure
of dense, steady, free-surface boundary layer granular
flow. Then, we ascertain how the structure of the flow
is manifested in aspects of the kinematics other than the
particle trajectories. To that end, we study the mean
velocity field and the coefficient of self-diffusion perpen-
dicular to the mean flow.

In our experiments we fill a shallow, transparent drum
(of diameter 30 cm and depth 2 1

2 bead diameters) halfway
with spherical beads (of diameter d � 2 or 3 mm). We
rotate the drum about its axis with angular velocities
between 1 and 5 rpm [Fig. 1(a)]. (For these angular
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of the boundary layer (where the flow is uniform in the
direction of the mean flow) [see Fig. 1(a)] and collect a set
of 1024 images at a rate of 500 images per second.
Subsequently, we use a computer program [8] to trace
the trajectory of each bead throughout the experiment
with a resolution of 1=100 of a bead diameter. Fig-
ure 1(b) shows part of a typical image from an experiment
with 2 mm beads, and the instantaneous velocity vectors
of the bead centers (from which we have subtracted the
velocity of the drum). The velocity vectors become very
small at a depth of seven bead diameters, indicating that
the thickness of the boundary layer is about 7d in this
experiment [9].

To investigate the structure of the flow, we superpose
all the trajectories in a single plot. The result (Fig. 2)
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FIG. 3. Statistical analysis of three sets of trajectories. The
set S1, for example, comprises all the trajectories 	 for which
the starting point, �x	1; z

	
1�, falls within the stratum marked S1

in Fig. 2; this means that 1:25d < z	1 < 2:25d, where 2:25�
1:25 � 1 is the thickness of the strata in units of the bead
diameter. (In the same way, we have 2:25d < z	1 < 3:25d for S2
and 3:25d < z	1 < 4:25d for S3.) The brackets h�i denote aver-
aging over all the trajectories in the set. The inset shows a
schematic of a single trajectory to illustrate 
x and 
z.

FIG. 2. Bead center trajectories for the same experiment as in
Fig. 1(b) above. There is a total of almost 1800 trajectories. The
free surface is at the top of the figure (z� 0) and the beads
move from left to right. In the upper portion of the boundary
layer (z < 1:25d), the beads saltate and the flow is not dense. In
most of the boundary layer (1:25d < z < 7d), the beads are
arranged in strata parallel to the free surface (e.g., S1, S2, etc.).
Beneath the boundary layer (z > 7d) the beads move in circular
trajectories, in solidlike rotation with the drum.
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shows that the trajectories are grouped in bundles aligned
with the direction of the mean flow (the x direction).
These bundles define a set of mutually parallel strata in
which the probability of finding a bead center is high. (In
Fig. 2 we have marked three of these strata with the labels
S1, S2, and S3.) The distance between adjacent strata
remains close to 1 bead diameter as each stratum slips
over the one below it. To verify that the strata are not
ephemeral features of the flow, we have performed addi-
tional experiments separated by large intervals of time
from one another and found the same strata as in Fig. 2.

The stratified structure of the flow revealed by Fig. 2 is
similar to the structure of simple laminar liquid flows
(e.g., the Poiseuille flow). A flow with the same stratified
structure was envisioned by Bagnold [3] in his classic
model of the granular flow in a Couette apparatus.
In discussing his model, Bagnold noted that ‘‘The mo-
tions of the grains consist, in addition to a drift in the
x-direction, of oscillations in all three directions, involv-
ing approaches to, and recessions from, neighbouring
grains.’’ This is a fitting description of the motion of the
beads within a single stratum as they slip over the beads
in the stratum below. However, each bead does not persist
indefinitely within a single stratum. Instead, Fig. 2 shows
that the beads will occasionally jump between adjacent
strata. To investigate the excursions of the beads in the
direction perpendicular to the strata (the z direction), we
perform a statistical analysis of the trajectories. We iden-
tify a trajectory by its coordinate pairs �xi; zi� measured
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in the successive images i � 1, 2, etc. We consider three
sets of trajectories. Each set comprises a number of tra-
jectories 	 � 1; 2; . . . ; n for which the starting point,
�x	1; z

	
1�, falls within one of the strata marked S1, S2, and

S3 in Fig. 2. For each set of trajectories, we compute the
quantities 
x	i � x	i � x	1, 
z	i � z	i � z	1, and �
z	i �

2 �
�z	i � z	1�

2 for all images i and trajectories 	 (inset of
Fig. 3). Then, we compute the average of these quantities
over all the trajectories in the set, i.e., h
xii �P

n
	�1 
x

	
i =n, h
zii �

P
n
	�1 
z

	
i =n, and h�
zi�

2i �P
n
	�1�
z

	
i �

2=n. Last, we plot h
zii=d versus h
xii=d and
h�
zi�

2i=d2 versus h
xii=d with i � 1, 2, etc. (These are
parametric plots in the parameter i; we shall omit the
subscript i when referring to these plots.) Figure 3 shows
these plots for the sets of trajectories S1, S2, and S3.

Suppose that the beads perform random walks in the z
direction. Each time a bead moves by one bead diameter
in the x direction, there is a probability r that the bead
will also move by one bead diameter in the z direction
(i.e., that the bead will change stratum). If the bead does
move in the z direction, then there is a probability p that
the bead will move down, and a probability 1� p that the
bead will move up. For a set of many trajectories, these
rules lead to the following equations [10]:

h
zi � r�2p� 1�h
xi; (1)

and

h�
z�2i � 4rp�1� p�dh
xi: (2)

The plots of h
zi=d versus h
xi=d in Fig. 3 are compat-
ible with (1) if p � 1=2. This means that when the beads
jump to an adjacent stratum they are just as likely to jump
to a deeper stratum as to jump to a less deep stratum.
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FIG. 4. Eulerian fields for an experiment with d � 2 mm and
! � 1 rpm. The inset illustrates the method of computation
of the profiles [13]. (a) Mean volume fraction profile [14],
(b) mean velocity profile, and (c) derivative of the mean
velocity profile with respect to z.

FIG. 5. Eulerian fields for experiments with d � 3 mm and
! � 1 rpm (curves marked A), 3 rpm (curves marked B),
and 5 rpm (curves marked C). (a) Mean velocity profiles and
(b) derivatives of the mean velocity profiles with respect to z.
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Further, the plots of h�
z�2i=d2 versus h
xi=d in Fig. 3 are
compatible with (2) if 4rp�1� p� � r � 0:029. This
means that on average the beads jump to an adjacent
stratum after having moved a distance of 1=0:029 � 34
bead diameters in the direction of the mean flow. The
visual impression given by Fig. 2 is, therefore, confirmed:
The beads move mostly parallel to the free surface and
jump between strata only occasionally.

From the previous paragraph, we conclude that the
beads perform random walks in the z direction. This is
tantamount to concluding that the beads undergo regular
self-diffusion perpendicular to the mean flow, just as
the atoms (or molecules) do in laminar liquid flows.
From the previous paragraph, we can further conclude
that the coefficient of self-diffusion in the z direction, Dz,
is proportional to the mean velocity in the x direction, hui
(where both Dz and hui vary with z). To see this, we
note that Dz can be defined by the equation h�
z�2i �
Dzt [11]; by comparing this equation with h�
z�2i �
0:029d h
xi � 0:029d huit, we obtain Dz � 0:029d hui,
or Dz / hui. To explain this result, we propose a ‘‘slip-
and-shake’’ model based on the stratified structure of the
flow. Let us number the strata starting with 0 for
the stratum at the bottom of the boundary layer. (Thus,
the mean velocity of stratum 0 is zero, hu0i � 0, and the
mean velocity of stratum 1 is positive, hu1i > 0.) As
stratum i slips on the wavy surface of stratum i� 1, the
beads in stratum i (and also the beads in strata i
 1, i

2, etc.) shake in the z direction with a frequency 
huii=d,
where 
huii is the mean velocity of stratum i relative to
stratum i� 1, 
huii � huii � hui�1i. Because each stra-
tum slips over the one below it, the beads in stratum i
shake in the z direction with the concurrent (generally
nonharmonic) frequencies 
huki=d (k � 1; 2; . . . ; i); this
means that the beads in stratum i jerk in the z direction a
number of times per unit time

P
i
k�1 
huki=d � huii=d.

The scaling Dzi / huii follows if we make the sensible
assumption that a bead attempts a jump to an adjacent
stratum every time it is jerked in the z direction.

It is instructive to compare the results of our statistical
analysis of the trajectories with the results of experimen-
tal [11] and computational [12] studies of dense granular
flow in a Couette apparatus. These studies have shown
that in a Couette apparatus the particles undergo regular
self-diffusion perpendicular to the mean flow, just as they
do in a drum, but with Dz / hui0 instead of Dz / hui,
where ���0 � d���=dz. We ascribe this difference in the
scaling of Dz to the difference between the boundary
conditions of the flow in a drum and the boundary con-
ditions of the flow in a Couette apparatus. In a drum, the
surface of the flow is stress free (the flow is driven by
gravity) and can accommodate the volumetric fluctua-
tions associated with the slip-and-shake mechanism. In
a Couette apparatus, on the other hand, the surface of the
flow is confined by the walls of concentric cylinders (the
flow is driven by a shear stress applied through those
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walls) and cannot accommodate volumetric fluctuations.
We conclude that the scaling Dz / hui stems from the two
conditions on which we have predicated our slip-and-
shake model: the ordered structure of the flow and the
free-surface boundary condition.

Having adopted the Lagrangian viewpoint to charac-
terize the structure of the flow, we now turn to the
Eulerian viewpoint. We compute two Eulerian fields, the
mean volume fraction profile, hf�z�i, and the mean veloc-
ity profile, hu�z�i, across the boundary layer thickness
[13]. Figure 4 shows (a) hf�z�i and (b) hu�z�i for the
same experiment with 2 mm beads of Figs. 1–3. A sig-
nature of the stratified structure of the flow is apparent in
the mean volume fraction profile, in the form of an
oscillation of wavelength equal to the distance between
adjacent strata (about 1d). We discern no such signature in
the mean velocity profile; however, a clear signature
becomes apparent, again in the form of an oscillation,
when we take the derivative of the mean velocity profile
064302-3
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with respect to z [Fig. 4(c)]. We conclude that the strati-
fied structure of the flow imprints a distinct oscillatory
signature on the Eulerian fields [15]. We confirm this
conclusion in experiments with 3 mm beads and three
different angular velocities of the drum (Fig. 5; note that
in all cases the oscillations are of wavelength 1 d).

Mueth et al. [6] documented oscillations similar to
those of Figs. 4 and 5 in experiments with dense granular
flow in a Couette apparatus. (In addition, they showed that
the oscillations are less pronounced when the particles are
less perfectly spherical or less smooth.) In earlier work,
Savage and Dai [12] documented an oscillation similar to
that of Fig. 4(a) in a computational simulation of dense
granular flow in a Couette apparatus. (In addition, they
showed that the oscillation occurs only when the flow is
dense.) Based on these results, Mueth et al. and Savage
and Dai surmised that the dense granular flow in a
Couette apparatus must be stratified in the way envisioned
by Bagnold [3]. Thus, in spite of the difference in bound-
ary conditions (and of the attendant difference in the self-
diffusion coefficient), the confined granular flow in a
Couette apparatus and the free-surface granular flow in
a partially filled drum appear to be similarly structured.

We have characterized the simplest possible laminar-
like structure in a dense, free-surface boundary layer
granular flow. Granular flows with more complex lami-
narlike structures appear to be possible at higher veloc-
ities; for example, Forterre and Pouliquen have reported a
dense, free-surface boundary layer granular flow with
vortices parallel to the direction of the flow [16]. It
remains to be ascertained whether a turbulentlike struc-
ture would occur at still higher velocities, as a recent
computational simulation suggests [17].

We are grateful for the financial support of the UIUC
Research Board and the UIUC Critical Research
Initiative Program.
0643
[1] H. M. Jaeger, S. R. Nagel, and R. P. Behringer, Rev. Mod.
Phys. 58, 1259 (1996); T. Shinbrot and F. J. Muzzio, Phys.
Today 53, No. 3, 25 (2000).

[2] J. McPhee, The Control of Nature (Farrar, Straus and
Giroux, New York, 1989). The third essay in this book,
titled ‘‘California versus the mountains,’’ is a superb
introduction to debris flows and their cost to society.
See also R. M. Iverson, Rev. Geophys. A 35, 245
(1997).

[3] R. A. Bagnold, Proc. R. Soc. London 225, 49 (1954).
[4] L. E. Malvern, Introduction to the Mechanics of a

Cotinuous Medium (Prentice-Hall, Englewood Cliffs,
New Jersey, 1969).
02-4
[5] M. Nakagawa, S. A. Altobelli, A. Caprihan,
E. Fukushima, and E.-K. Jeong, Exp. Fluids 12, 54
(1993); K. M. Hill, Ph.D. thesis, University of
Minnesota, 1997; N. Jain, J. M. Ottino, and R. M.
Lueptow, Phys. Fluids 14, 572 (2002); D. Bonamy,
F. Daviaud, and L. Laurent, ibid. 14, 1666 (2002).

[6] D. M. Mueth, G. F. Debregas, G. S. Karczmar, P. J. Eng,
S. D. Nagel, and H. M. Jaeger, Nature (London) 406, 385
(2000); D. M. Mueth, Phys. Rev. E 67, 011304 (2003).

[7] D. G. Andrews and M. E. McIntyre, J. Fluid Mech. 89,
609 (1978); W. R. C. Phillips, J. Fluid Mech. 430,
209 (2001); H. Aref, Phys. Fluids 14, 1315 (2002);
A. La Porta, G. A. Voth, A. M. Crawford, J. Alexander,
and E. Bodenschatz , Nature (London) 409, 1017 (2001).

[8] J. C. Crocker and D. G. Grier, J. Colloid Interface Sci. 179,
298 (1996). The program is available for downloading at
http://glinda.lrsm.upenn.edu/~weeks/idl/download.html

[9] Although we ascribe a ‘‘finite’’ thickness to the boundary
layer, the velocity vectors may not vanish at a finite
depth; instead, the recent experimental results of
Komatsu et al. indicate that the velocity vectors vanish
asymptotically with depth, just as they do in the viscous
(Prandtl-Blasius) boundary layers of liquid flows. See
T. S. Komatsu, S. Inagaki, N. Nakagawa, and S. Nasuno,
Phys. Rev. Lett. 86, 1757 (2001).

[10] S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).
[11] S.-S. Hsiau and Y.-M. Shieh, J. Rheol. 43, 1049

(1999).
[12] S. B. Savage and R. Dai, Mech. Mater. 16, 225 (1993).
[13] To compute the profiles, we partition each of the 1024

images from one experiment into equally sized bins
parallel to the x direction and of thickness � in the z
direction. Consider the bin centered at a depth z , Bz
[inset of Fig. 4(a)]. Associated with Bz, we compute one
point of the mean velocity profile, hu�z�i � huiBz

�
�
P

i

P
b u

b
i V

b
i �=

P
i

P
b V

b
i and one point of the mean vol-

ume fraction profile, hf�z�i � hfiBz
�

P
i

P
b V

b
i =1024V.

In these expressions, the sum in i extends over all the
1024 images, the sum in b extends over all the beads, ubi
is the instantaneous velocity of the bead b in the image i,
Vb
i is the portion of the volume of the bead b which falls

within Bz in the image i, and V is the volume of Bz, V �
w�d, where w is the width of the bin in the x direction.
The profiles obtained in this way become invariant to
changes in � when � < d=10 . We use � � d=20.

[14] For comparison, the volume fraction of a square packing
is 0.524, and that of a hexagonal packing is 0.605.

[15] The detection of analogous oscillatory signatures in the
volume fraction and velocity profiles of laminar liquid
flows would require tracking the individual atoms (or
molecules) of the liquid within a length scale comparable
to the size of the atoms. This would appear to be
experimentally unfeasible.

[16] Y. Forterre and O. Pouliquen, Phys. Rev. Lett. 86, 5886
(2001).

[17] F. Radjai and S. Roux, Phys. Rev. Lett. 89, 064302 (2002).
064302-4


