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Ordering Chaos by Random Shortcuts
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In this Letter, the effects of random shortcuts in an array of coupled nonlinear chaotic pendulums and
their ability to control the dynamical behavior of the system are investigated. We show that random
shortcuts can induce periodic synchronized spatiotemporal motions, even though all oscillators are
chaotic when uncoupled. This process exhibits a nonmonotonic dependence on the density of shortcuts.
Specifically, there is an optimal amount of random shortcuts, which can induce the most ordered motion
characterized by the largest order parameter that is introduced to measure the spatiotemporal order. Our
results imply that topological randomness can tame spatiotemporal chaos.
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Over the last two decades, counterintuitive phenomena
induced by noise and disorder have attracted increasing
attention. It is now well known that intrinsically noisy
and disordered processes, such as thermal fluctuations or
mechanically randomized scattering, can generate sur-
prisingly ordered patterns in nonlinear systems [1].
Intriguing examples include stochastic resonance (SR)
[2], noise-induced transition [3], noise-sustained waves
[4], spatiotemporal chaos tamed by disorder [5], disorder-
enhanced synchronization [6], etc. But understanding the
emergence of order induced by different types of random-
ness in these complex systems is a formidable challenge
to statistical mechanics. Presently, complex networks
have attracted considerable interests, the main reason
being that they seem to be exceedingly simple model
systems of complex behavior in real world systems [7].
In fact, any complex system in nature can be modeled as a
network, where vertices are the dynamic elements of the
system and the edges represent the interactions between
them. The dominant study on complex networks so far is
to investigate the topological properties of the networks
and various mechanisms that determine the topology.
Many models were presented, including small world net-
works and scale-free networks [8]. It has been shown that,
in many real-life cases, connections among network
elements are neither completely random nor completely
local (regular), but somewhere in between. In other words,
real networks have some degree of fopological random-
ness. It is well accepted that the topology of a network
often plays crucial roles in determining the dynamic
features of the system. Therefore, it is natural to ask if
this new type of randomness might play some construc-
tive roles for the system’s dynamic features, like noise and
disorder. To our knowledge, few investigations focus on
this topic so far [9]. This Letter provides one intriguing
example and gives a positive answer to this question.

In this Letter, we have studied the collective dynamic
behavior of an array of coupled chaotic oscillators with
direct shortcuts between randomly chosen oscillators.
Coupled oscillators provide a simple but powerful mathe-

064102-1 0031-9007/03/91(6)/064102(4)$20.00

PACS numbers: 05.45.Xt, 64.60.Cn, 87.18.Bb

matical model for simulating the collective behavior of a
variety of systems that are of interest in physics, chemi-
cal, and biological sciences [10]. In general, there could be
a wide variety of collective behaviors, such as phase
synchronization, phase trapping, spatiotemporal chaos,
and so on. In this study, nontrivial effects of random
shortcuts have been found. On one hand, we find that
there exists an optimal fraction of shortcuts that can
tame the spatiotemporal chaos observed in the regular
array to periodic synchronized motion. On the other
hand, addition of a little randomness to a regular network
can lead to synchronization more effectively than regular
networks or completely random networks.

We consider an array of forced, damped, pendulums
governed by the following equation:

ml%20, + yb, = — mgl,sind, + 7 + 7sinwt

+ > Km0, = 6,), (1)

wheren =0,1,2,..., N — 1, N = 128, and the boundary
condition is free (k,,, = 0if m <0 orm > N — 1). The
parameters used are the gravitational acceleration g =
1.0, mass of the pendulum m = 1.0, length /, = 1.0, dc
torque 7' = 0.7155, ac torque 7 = 0.4, the angular fre-
quency w = (.25, and the damping y = 0.75. k,,,, is the
coupling strength between the two oscillators n and m,
which is determined by the coupling pattern of the sys-
tem. If these two oscillators are coupled to each other, we
have «,,, = k = 0.5, and otherwise «,,, = 0. We numeri-
cally integrate Eq. (1) using a fourth order Runge-Kutta
technique with a time step dr = 0.001. For an isolated
pendulum, the dynamic behavior is chaotic for the default
length [/ = 1.0, which is characterized by a positive
Lyapunov exponent. For [ > 1.0, the pendulum executes
a libration in which it oscillates about its equilibrium
position without overturning; i.e., the angle 6 never ex-
ceeds 27. If [ < 1.0, the pendulum executes a whirling
where the combined torques rotate the pendulum over the
top and the angle @ past 2.
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To add randomness to the topological structure of the
network, we start from a regular array where each site is
connected to its two nearest neighbors. Then we randomly
add links between non-nearest sites. The number of ran-
dom shortcuts is denoted by M, and the fraction of ran-
dom shortcuts, which is the ratio of random shortcuts to
all possible number of edges among the oscillators, is
given by ¢ = 2M /(N — 1)(N — 2).

Figure 1 describes the spatiotemporal evolution of an
array of 128 pendulums. Time passes from the bottom to
top. The colors code the angular velocities of each pen-
dulum: black denotes negative velocities and white de-
notes positive ones. The narrow strips of black and white
represent sudden motion of the oscillators. In the absence
of random shortcuts (g = 0), spatiotemporal chaos is
observed as shown in Fig. 1(a). However, when a certain
number of random shortcuts are present, we find that the
system shows a very regular spatiotemporal pattern,
which is synchronized in space and periodic in time.
Such an example is depicted in Fig. 1(b) for ¢ = 0.01
and M ~ 80, where the synchronized pattern repeats
every four forcing periods. If the number of random
shortcuts is further increased, the motion of the array
is still synchronized in space, but now chaotic in time.
This observation demonstrates the phenomenon of ““or-
dering chaos by random shortcuts” and the existence of
an optimal level of topological randomness such that
the spatiotemporal evolution of the system is the most
ordered.

To further characterize this behavior quantitatively,
we introduce a quantity to measure the regularity of
the spatiotemporal pattern. It is based on the normal-
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FIG. 1. Spatiotemporal evolution of a chain of 128 coupled
pendulums with random shortcuts. Time increases from bottom
to top. From the left to right, ¢ is 0.0, 0.01, and 0.02.
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ized autocorrelation function c¢;(7,), defined as c;(7;) =
@.(178;(t + 7,))/¢0?), where 6,(t) is the angular velocity
of the ith pendulum at time ¢, 7, is the time delay, 9,(¢) =
6,(1) — (6,), and the averaging is taken over the time.
A characteristic correlation time for the ith pendulum is
then evaluated as ;. = T [, c?(1)dt, following Pikovsky
et al. [11]. In the present case of limited and discrete
sampling with N, data points for each oscillator, the
characteristic correlation time is given by 7;.=
ﬁZf(\;l cX(ri)At, where 7, = kAt with At being the
sampling time, and NyAr being the length of the time
series.

Then the “order parameter” for given ¢ is defined as
7(q) = [{7; )], where angular brackets denote the averag-
ing over all the pendulums and square brackets the aver-
aging over 100 different network realizations with the
same ¢g. The more ordered a pendulum oscillation is, the
longer is its characteristic correlation time and hence its
contribution to the order parameter. Therefore, this quan-
tity can be readily used to measure the degree of spatio-
temporal order in the present system [12].

The dependence of this quantity on the fraction of
random shortcuts ¢ is presented in Fig. 2. It has a clear
maximum around g = 0.01, where all pendulums run
periodically with the same phase. This gives an evident
example that the system dynamics show somewhat ‘‘reso-
nant” behavior with an optimal level of topological ran-
domness, similar to the effects of noise and disorder in
nonlinear systems such as SR. One should note that this
resonant behavior is nontrivial. To establish the impor-
tance of random connections, we have also generated
results for regular array with nonrandom long-range
connections and for completely random arrays. First,
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FIG. 2 (color online). Dependence of 7(g) on g (or M) in the
regular array with random shortcuts (circle with error bar), the
completely random network (dashed line), and two schemes of
adding regular long-range connections on regular array. The
curve with symbol A and the curve with symbol @ correspond
to scheme 1 and scheme 2, respectively. The inset shows the
dependence of 7 on K (the number of connections per site) in a
regular array (see text). Spatiotemporal evolution pattern for
regimes (a), (b), (c) are shown in Fig. 1.
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for a regular array with each site connecting to its K
neighbors (i.e., site i is connected to site i — K/2,...,i —
1,i+1,...,i+ K/2), the order parameter 7 defined
above increases sharply at first and then nearly saturates,
as shown in the inset of Fig. 2. However, one notes
that, for K = 4, there are already 126 additional edges
added to the original regular array with N — 1 = 127
edges, and the corresponding order parameter 7 is only
0.021, which is much smaller than the value of 7 = 0.045
for ¢ = 0.01, where the amount of shortcuts are only
about 80. Second, we consider two schemes to create
regular long-range connections only for a subset of the
cells. In scheme 1, we add connections between site i and
i + kif (imod2k) = 0. For k = 4, this would create links
between elements 0 and 4, 8 and 12, etc. In scheme 2,
connections are added between the elements i and N —
M+ii=1,2, ..., M. Notice that for both schemes the
maximum number of nonrandom shortcuts M is limited
by the system size N. The dependence of the order pa-
rameter on the number of nonrandom shortcuts for these
two schemes is also shown in Fig. 2. It can be seen that no
nontrivial behavior appears for both schemes. From this
point of view, the addition of random shortcuts to a
regular array is more effective to achieve a periodic
spatiotemporal state than regularly adding long-range
connections. Finally, we have also studied the case of a
completely random array, where M + N — 1 edges are
randomly distributed to the N elements. In this situation,
we find that 7 also has a maximum with the increment of
M (see also Fig. 2), but the peak value is much smaller.
Therefore, the sharp peak in the 7 — ¢ curve is the
combined effect of regular network and random short-
cuts. Neither regular networks only nor completely ran-
dom networks only can induce such a nontrivial
phenomenon.

From the simulation results above, one may understand
the mechanism qualitatively, though we have not per-
formed an analytical explanation. It is reasonable that
enough long-range connections can synchronize the pen-
dulum array. On one hand, just a few such shortcuts can
create local structures, with effective average pendulum
lengths significantly different from unity, that entrain the
entire array in periodic motion, either rotation/whirling
or libration. Therefore, the spatiotemporal chaos is tamed
and a synchronized periodic motion is observed. On the
other hand, if adding more long-range shortcuts, local
structures will be smoothed such that the whole system
behaves like a single pendulum and a synchronized cha-
otic motion results. Since a regular array is necessary for
local structure and long-range shortcuts are necessary for
synchronization, one can conclude that the nonmonotonic
behavior is a combined effect of both regular array and
random long-range shortcuts. The local maximum in the
order parameter for the random array might be explained
as follows: since we have had a lot of realizations when
generating a random array, there is some chance that some
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realizations of the random array can be viewed as “‘regu-
lar array” plus “random shortcuts.” Therefore, a local
maximum also exists in the order parameter, but the value
is much smaller. Alternatively, we may understand this
phenomenon from another point of view. Generally, a
spatially extended system would occupy a large high-
dimensional parameter space. Every neighborhood in
the parameter space will be associated with lots of dy-
namic attractors. It is possible that adding random short-
cuts will shift the system’s dynamics from the
spatiotemporal chaotic attractor to a synchronized peri-
odic attractor nearby [5].

To summarize, we have studied the collective dynami-
cal behavior of an array of coupled pendulums with a
small fraction of random long-range connections. We
show that the spatiotemporal chaos observed in a regular
way can be tamed into synchronized periodic motion.
In addition, there is an optimal amount of random short-
cuts, which can induce the most periodically synchro-
nized spatiotemporal motions. It is strongly against the
intuition since it is generally accepted that random con-
nections are not favorable to the formation of any regular
spatiotemporal patterns. It also gives a novel example
describing how order can emerge from systems with
topological randomness. The collective behaviors arise
not only on the element’s intrinsic dynamical processes,
but also on their coupling patterns between each other.
Since control and synchronization of chaotic dynamics
have been established as a central topic in nonlinear
science [13-15], we are sure that the proposed approach
here should have potential applications in such systems as
Josephson array or semiconductor laser arrays, where any
type of regular behavior is preferred to chaos. The effect
of shortcuts may be utilized as a new efficient strategy for
the control of other discrete and continuous dynamical
systems, such as coupled map lattices, turbulence, spatio-
temporal chaos, etc.
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