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Accelerating Cosmologies from Compactification
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A solution of the �4� n�-dimensional vacuum Einstein equations is found for which spacetime is
compactified on an n-dimensional compact hyperbolic manifold (n � 2) of time-varying volume to a
flat four-dimensional Friedmann-Lemaitre-Robertson-Walker cosmology undergoing a period of
accelerated expansion in the Einstein conformal frame. This shows that the ‘‘no-go’’ theorem forbid-
ding acceleration in ‘‘standard’’ (time-independent) compactifications of string or M theory does not
apply to ‘‘cosmological’’ (time-dependent) hyperbolic compactifications.
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Clearly, any attempt to derive a viable cosmology from
string or M theory must circumvent this no-go theorem,

fields. In this case, we need to confront an ambiguity in
the choice of ‘‘conformal frame’’ for the metric: Given a
Astronomical observations appear to show that the
universe is not only expanding but is undergoing accel-
erated expansion (see, e.g., [1]). In addition, recent mea-
surements of the cosmic microwave background provide
support for the hypothesis of accelerated expansion in a
much earlier inflationary cosmological epoch (see, e.g.,
[2,3]). Although it is not difficult to find cosmological
models that exhibit these features, one would wish any
such model to be derivable from a fundamental, and
mathematically consistent, theory that incorporates both
gravity and the standard model of particle physics. Most
current attempts to place the standard model within such
a framework start from the ten- or eleven-dimensional
spacetime of superstring or M theory, in which case one
needs a compactification of ten- or eleven-dimensional
supergravity in which an effective four-dimensional cos-
mology undergoes one or more periods of accelerated
expansion. However, it has been shown that no such
solution exists when the six- or seven-dimensional ‘‘in-
ternal’’ space is a time-independent nonsingular compact
manifold without boundary [4,5]. Three observations go
into the derivation of this ‘‘no-go’’ theorem. The first is
that accelerated expansion requires a violation of the
strong-energy condition. This is the condition on the
stress tensor that, given the Einstein equations, implies
R00 � 0, but the acceleration of a Friedmann-Lemaitre-
Robertson-Walker (FLRW) (homogeneous and iso-
tropic) universe is positive if and only if R00 is negative.
The strong-energy condition is violated in many four-
dimensional supergravity theories but, and this is the
second observation, it is not violated by either eleven-
dimensional supergravity or any of the ten-dimensional
supergravity theories that serve as effective field theories
for a superstring theory. The third observation is generic
to any compactification of the type specified in the
theorem: If the higher-dimensional stress tensor satisfies
the strong-energy condition, then so will the lower-
dimensional stress tensor.
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and this is possible in one of two ways. Either one rejects
ten- or eleven-dimensional supergravity as the relevant
starting point or one relaxes one or more of the premises
of the theorem. Attempts to circumvent the theorem by
the addition of higher-derivative ‘‘quantum correction’’
terms to the supergravity action, or appeals to nongeo-
metrical solutions of string theory with no classical ana-
logue, would fall into the former category, but we are not
aware of any successful attempt along these lines. Here
we shall assume that ten- or eleven-dimensional super-
gravity is the relevant starting point. The following op-
tions are now available. One can give up the compact
condition on the internal space; this has the advantage
that there are then known ‘‘compactifications’’ that allow
accelerating four-dimensional cosmologies [6,7], but the
disadvantage that the four-dimensional spectrum is con-
tinuous. As no good way around this problem has been
found, or seems likely to be found [8], we discard this
possibility. The possibility of an internal space that is
compact but has a boundary can be considered a special
case of an internal space with singular subspaces. This
appears to be an attractive way to escape the no-go
theorem because M theory includes branes and bounda-
ries on which the matter fields of the standard model are
likely to be located. However, any singular internal space
that is the limit of a sequence of nonsingular spaces
would, by continuity, suffer from the same problems as
nonsingular internal spaces, so one would expect to have
to consider nonresolvable singularities. We are not opti-
mistic about this option, although it certainly deserves a
full investigation.

The only remaining option is to give up the condition
of time independence of the internal space. As we are
concerned with cosmological solutions, which are in-
trinsically time dependent, there is no good reason to
suppose that the internal space is not also time dependent.
From the four-dimensional perspective, this amounts to
the supposition that there are time-dependent scalar
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scalar field � and a metric g, one can take

~gg �� � e2�g�� (1)

as a new, conformally rescaled, metric. The choice of
conformal frame for which the four-dimensional gravi-
tational action is of Einstein-Hilbert type, with no
scalar-field-dependent multiplicative factor, defines the
‘‘Einstein frame’’ metric. If one insists on the Einstein
conformal frame, then it is not immediately obvious how
time dependence of the internal manifold helps. Unless
the compactification generates a scalar potential, or a
cosmological constant, the four-dimensional stress tensor
will still satisfy the strong-energy condition. Thus, toroi-
dal compactification (of the vacuum Einstein equations)
can never yield an accelerating universe in Einstein
frame. This conclusion does not apply if the metric is
not in the Einstein conformal frame: Let g�� be the four-
metric of an FLRW cosmology in standard coordinates,
and let the scalar field � of (1) depend only on the time
coordinate t; then

~RR 00 � R00 � 3� ����t� �H�t� _���; (2)

where H�t� is the Hubble ‘‘constant.’’ This shows that
positivity of R00 does not imply positivity of ~RR00.

This point is illustrated by the following Kasner-type
metric:

ds2 � �dt2 � t2�dx 	 dx� t2�ds2�Tn�: (3)

This solves the (4� n)-dimensional vacuum Einstein
equations if

� �
3


���������������������
3n�n� 2�

p
3�n� 3�

; � �
n�

���������������������
3n�n� 2�

p
n�n� 3�

: (4)

The upper sign yields a standard decelerating four-
dimensional FLRW spacetime. The lower sign yields an
accelerating but contracting four-dimensional FLRW
spacetime for n � 2. However, by taking t ! �t1 � t�,
we get

ds2 � ds24 � �t1 � t�2�ds2�Tn�; (5)

where ds24 is a flat FLRW spacetime with scale factor

a�t� � �t1 � t��: (6)

As _aa > 0 and �aa > 0 for t < t1, we have accelerated
expansion. However, ds24 is not the Einstein-frame metric.
The Einstein-frame four-metric yields a decelerating
universe.

Non-Einstein conformal frames have the feature that
the effective Newton constant becomes time dependent in
cosmological solutions. For this reason, among others,
what is really needed is a cosmological compactification
of ten- or eleven-dimensional supergravity that yields a
four-dimensional FLRW universe undergoing accelerated
expansion in the Einstein frame. We have just argued
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(assuming the absence of a scalar potential generated
by fields other than the metric) that this cannot be
achieved by any toroidal compactification and the same
argument applies to compactification on any Ricci-flat
space. However, we shall show, by example, that there
exist cosmological compactifications on Einstein spaces
of negative curvature that yield accelerating four-
dimensional FLRW cosmologies in the Einstein frame.

Consider an n-dimensional compact Einstein manifold
with metric

dŝs2n � ĝgmndymdyn: (7)

We will take it to have constant negative curvature �, so
that n � 2 and

R�ĝg�mn � ��n� 1��2ĝgmn: (8)

Such spaces are obtained by identifying hyperbolic n
space under the action of a freely acting discrete subgroup
of its SO�1; n� isometry group. The identifications break
all continuous isometries, so there will be no massless
Kaluza-Klein vector fields resulting from compactifica-
tion on this space.

Now consider the following �4� n�-metric parame-
trized by functions of time S�t� and K�t�:

ds2 � e3nt=�n�1�K��n=�n�1��ds2E � e�6t=�n�1�K2=�n�1�dŝs2n;

(9)

where

ds2E � �S6dt2 � S2dx 	 dx: (10)

This metric solves the �4� n�-dimensional vacuum
Einstein equations if

S�t� � e��n�2�t=�2�n�1��Kn=�2�n�1��; (11)

and

K�t� �

�����������������������
3�n� 2�=n

p
�n� 1�� sinh�

�����������������������
3�n� 2�=n

p
jtj�

: (12)

Note that � has dimensions of inverse length, but an
implicit dimensionful constant appearing in these expres-
sions has been set to unity.

The four-metric ds2E is the Einstein frame metric of the
four-dimensional theory that results from the compacti-
fication of the n internal dimensions. It takes the standard
FLRW form for a flat homogeneous isotropic universe
with scale factor S in terms of the time coordinate �
defined by

d� � S3�t�dt: (13)

The four-dimensional universe is expanding if dS=
d� > 0. This is equivalent to m�t�< 0, where

m�t� � 1�

������������
3n

n� 2

r
coth�

�����������������������
3�n� 2�=n

p
t�: (14)
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The universe undergoes accelerated expansion if, in ad-
dition, d2S=d�2 > 0. This is equivalent to

m�t�2 <
3�n� 1�=�n� 2�

sinh2�
�����������������������
3�n� 2�=n

p
t�
: (15)

Both conditions are satisfied simultaneously for negative t
in a certain interval, as can be seen from the plot of m�t�
in Fig. 1 for the n � 7 case of relevance to M-theory
compactifications. It can be shown that the universe is
decelerating both as � ! 0 (corresponding to t ! �1)
and as � ! 1 (corresponding to t ! 0 from t < 0).
Specifically, one finds that

S� �1=3 �� ! 0�; (16)

which corresponds to the ‘‘stiff matter’’ equation of state
p � � (for pressure p and mass density �), and

S� ��� �0�
n=�n�2� �� ! 1�; (17)

which corresponds to the equation of state p � ��n�4
3n ��;

for n � 4, this implies that the universe ends as a dust-
filled Einstein–de Sitter universe, but for the n � 6; 7
cases of relevance to M-theory compactifications the final
epoch is one with negative pressure matter, although the
pressure is not sufficiently negative for acceleration. These
two decelerating epochs are joined by an epoch of accel-
erated expansion, as shown in Fig. 2 for the n � 7 case.
The ‘‘matter’’ responsible for this behavior is of course
the four-dimensional scalar field arising from the Kaluza-
Klein mode that scales the volume of the compact inter-
nal space.

From these results, one can see that the singularity of
the function K at t � 0 is not a singularity of the
Einstein-frame four-metric because t � 0 is at an infinite
proper time in the future of any event with t < 0. It is also
at an infinite proper time in the past of any event with
FIG. 1. The function m�t� for n � 7 is compared to the square
root of the right-hand side of relation (15), in small dashes. The
difference is plotted in wide dashes and is positive in the
interval of acceleration.
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t > 0, so our solution really describes two possible uni-
verses, one for t < 0 and another for t > 0. Although the
function K is symmetric under t ! �t, the (4� n)-metric
(9) is not, and only the t < 0 case leads to a universe with
an accelerating phase. Note that the t < 0 and t > 0
universes need not be (and are not) isometric; because
t � 0 is not in the spacetime, t ! �t (in contrast to � !
��) is not a transformation that reverses the cosmologi-
cal flow.

We have now shown how the no-go theorem of [4,5]
may be circumvented by compactification on spaces with
time-dependent metric. Such compactifications are, of
course, typical of Kaluza-Klein cosmology, and have
been extensively studied. However, no previous accelerat-
ing Kaluza-Klein cosmology that we are aware of can be
considered as an escape from the no-go theorem of [4,5],
either because the strong-energy condition is violated
already in the higher dimension, or because the four-
dimensional conformal frame is non-Einstein. Our solu-
tion has none of these undesirable features and yet not
only has an accelerating phase, but also has a built-in
mechanism to both start and stop acceleration.

Time dependence of the internal metric was not in
itself sufficient to yield an accelerating universe in four
dimensions in the Einstein frame. A hyperbolic compact
internal space was also needed (because the analogous
solution of the vacuum Einstein equations for an internal
manifold of positive curvature does not allow accelera-
tion). The absence of massless Kaluza-Klein vector fields
in hyperbolic compactifications would be a serious defect
in a traditional Kaluza-Klein cosmology, but is an advan-
tage from the modern perspective in which matter lives on
space-filling branes. This also allows the matter to be
supersymmetric and suggests a possible mechanism for
supersymmetry breaking by coupling to the nonsuper-
symmetric ‘‘bulk’’ gravitational theory arising from the
supersymmetry breaking compactification (note that field
FIG. 2. The scale factor S��� of the four-dimensional uni-
verse is shown for n � 7 and � � 1. It clearly exhibits an
accelerating phase.
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theories with rigid supersymmetry can be coupled con-
sistently, albeit nonsupersymmetrically, to pure gravity).

A discussion of the cosmological advantages of hyper-
bolic compactifications can be found in [9,10]. One such
advantage, emphasized in [9] (where the relevant refer-
ences to the mathematical literature may be found), arises
from the remarkable fact that the only modulus of a
compact hyperbolic Einstein space of dimension n � 3
is its volume, so only the volume can be time dependent;
this means that there is no ‘‘rolling moduli’’ problem with
this type of compactification. It seems remarkable that a
model with so many attractive features can arise from a
very simple compactification of M theory.

We are grateful to Gary Gibbons and Neil Turok for
helpful discussions. We also thank Ishwaree Neupane for
Email correspondence, which led us to make some minor
clarifications. M. N. R.W. acknowledges financial support
from the Gates Cambridge Trust.

Note added.—After having sent an earlier version of
this paper to the archives, we learned that the solution
of the vacuum Einstein equations found here is the ‘‘zero-
flux limit’’ of solutions of the nonvacuum Einstein equa-
tions obtained earlier in a different context by Chen
et al. [11] and Ohta [12]. This point has since been
elaborated on in a number of papers [13–15] (some earlier
papers [16,17] are also of possible relevance in this con-
text); in the presence of flux, the relevant equations are not
the vacuum Einstein equations and acceleration can also
occur for compactification on spaces of non-negative
curvature. All cases found thus far are qualitatively simi-
lar to the one discussed here in that the acceleration is
transient and leads to only a few e-foldings [18,19]. As a
consequence, the mechanism for acceleration identified
here is probably not relevant to inflation in the early
universe but, as discussed in [20], it may be compatible
with the observations of acceleration in the current cos-
mological epoch. There is an intuitive explanation for the
acceleration in terms of the scalar potential V in the
effective four-dimensional theory [21]. In any region of
field space where V is positive and sufficiently steep,
there exists a solution for which the scalar fields rush
up the hill, come to rest, and then fall back; the four-
061302-4
dimensional universe is accelerating in the neighbor-
hood of the turn-around point. In this context, the no-go
theorem of [4,5] states only that there is no stationary
point of V with V > 0. Therefore, it remains possible that
there exists some cosmological compactification that al-
lows an arbitrary number of e-foldings.
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