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Effect of Space Discretization on Phase Diagrams in Ionic Systems: A Field-Theoretic Approach
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Using Landau-Ginzburg-Wilson field-theoretic methods we determine for what kind of space
discretization the transition between charge-disordered and charge-ordered phases in the restricted
primitive model is fluctuation-induced first order. We identify this transition with ionic-crystal
formation. We predict four types of generic phase diagrams in ionic systems for various kinds of space
discretization for low and intermediate densities of ions. Our results also shed light on the simulation
results obtained for an off-lattice ionic system over a wide range of densities, including the fcc crystal.
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is a very practical side as well. Discretization is often used
as a way of simplifying calculations and simulations, but

bers, i � 1; 2; 3, summation convention is used, and the
distance is measured in a units. � � ��� ���	=2��0
Recent theoretical and simulation results for ionic sys-
tems [1–5] seem to contradict the fundamental tenet of
the theory of critical phenomena—the irrelevance of the
short-length-scale properties of the system (in particular
the space discretization) for the universal features of the
phase diagrams [6]. Thanks to this fundamental property
lattice models have been extensively used in calculations
and simulations. Experimental phase diagrams in ionic
solutions or molten salts [7] are correctly reproduced by
the restricted primitive model (RPM) in which classical
ions are modeled by charged hard spheres of equal charge
e and diameter �, interacting via Coulomb forces [8].
However, the phase diagrams of the lattice version of
the RPM change character completely when the space
discretization n � �=a, (a is the lattice constant and
n � 1) is varied from n � 1 to n � 3, i.e., for fixed �
the number of lattice sites per unit volume increases (for
n! 1 the lattice sites become dense in R3) [1–4]. For
n � 1 order-disorder transition between a diluted uni-
form and a dense charge-ordered phase (with two oppo-
sitely charged sublattices) occurs. The transition is first
order at low temperatures and changes into a line of
continuous transitions (� line) at the tricritical point
(tcp) [1–4]. For n � 2 only a first-order order-disorder
transition was found in simulations [2]. For n � 3, sim-
ulations show separation into uniform, ion-poor and ion-
rich phases, terminated at the critical point, with no sign
of the � line and the tcp, as in the continuum RPM [2]. In
the continuum RPM the critical point belongs to the Ising
universality class [4,7–10], whose all members studied so
far are characterized by phase diagrams having the same
local properties in continuum and on different lattices.
Very strong dependence of the phase diagrams on space
discretization in the systems discussed here reveals a
more complex nature of phase transitions and critical
phenomena in ionic systems, and our work is aimed at
elucidating the origin of this complexity. In addition to
the fundamental importance of understanding this, there
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it can only be so employed when its effects are well
understood.

In this Letter we use Landau-Ginzburg-Wilson field-
theoretic methods [6] to predict the change of character in
the phase separation that occurs as one changes space
discretization, as well as to illuminate closely related
issues that are encountered at higher volume fractions,
involving order-disorder transition between two fcc solid
phases that has been discovered recently in simulations of
the RPM [11]. A question that we shall address here is
whether the order-disorder transition in the fcc solid has
the same origin as the transition in the lattice models
described above.

One can consider several extended-core models for
increasing n: I—only the nearest-neighbor (nn) occu-
pancy excluded, n �

���
2

p
; II—second nn exclusion in

addition, n �
���
3

p
; and III—the third nn exclusion as

well, n � 2. The simulations in Ref. [2] are for n � 2
only. One might expect model I to be closer in behavior to
the continuum model, because each ion can have 12
neighbors at the distance of the closest approach, ann,
while for n � 2 there are only six such neighbors, as on
the simple cubic (sc) lattice. Moreover, in model I the
uncharged reference system undergoes a transition to a
phase in which only one sublattice (with the fcc structure)
is occupied, which means one can hope to study in this
model both its disordered ‘‘fluid’’ and its solid phases. We
shall pay particular attention to model I in this Letter.

The Hamiltonian of the RPM model on the sc lattice
with arbitrary n has the form

H �
E0

2

X
x;x0

Vc�jx� x0j	g�jx� x0j	ŝs�x	ŝs�x0	 ��
X
x

ŝs2�x	;

(1)

where ŝs � �1;�1; 0 represents the anion, the cation, and
the solvent, respectively. The lattice sites are x � xiei,
where ei are the unit lattice vectors, xi are integer num-
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is the chemical potential. The energy unit is E0 �
e2a2nn=�Dv0	, where D is the dielectric constant of
the solvent and v0 is the volume per lattice site. The
corresponding dimensionless temperature is TE �
1=�E � kT=E0. The Vc�jx� x0j	 is the dimensionless
Coulombic potential; g�j�xj	 � 0 for forbidden pairs of
sites and g�j�xj	 � 1 otherwise. Different discretizations
correspond to g�j�xj	 � 0 for different values of j�xj.
For n � 1 simultaneous occupancy of the lattice sites is
excluded, and g � 0 only when j�xj � 0; for model I
g � 0, also for j�xj � 1, etc.

On the mean field (MF) level that we shall consider
here the grand potential � is approximated by [4]

���;�
 � Fsr��;�
 �U��
 ��
X
x

��x	; (2)

where � � hŝs2i, � � hŝsi are the number and charge den-
sities, respectively. Fsr��;�
 �

P
xfsr is the free energy

of the uncharged reference system, containing the ideal-
gas contribution and terms associated with the exclusion
of occupancy of the forbidden pairs of sites. The internal
energy U��
 is approximated by

U �
E0

2

X
x;x0

��x	Vc�jx� x0j	g�jx� x0j	��x0	: (3)

The boundary of stability of � with respect to charge
fluctuations ~���k	 is given by ~CC0

���kb	 � 0, where

~CC 0
���k	 �

 2��

 ~���k	 ~����k	
�

1

�0
� �E ~VV�k	; (4)

~VV�k	 (defined for �! � ki � !) is the Fourier transform
of Vc�jx� x0j	g�jx� x0j	, and at k � kb the ~VV�k	 as-
sumes a minimum. The first term in Eq. (4) results from
the ideal-gas part in Fsr. The line of instability

TE � S��0; S� � � ~VV�kb	 > 0 (5)

separates the uniform phase with� � 0; � � �0 from the
charge-ordered phase, where ��x	 � 	cos�kb � x	 for
TE ! S��0 from below; 	 corresponds to the minimum
of � and is given by

A4

4!
	2 �

�E

2
�S� � TE=�0	;

A4 �
1

�3
0

�
2�

3

�0
~CC0
���0	

�
; (6)

where ~CC0
���k	 is defined by an expression analogous to (4).

At the tcp, A4 � 0 and TE=�0 � S�. Different discreti-
zations are associated with different forms of g, and in
turn with different ~VV�k	 and kb. Hence, the slopes of the
MF line of instability (5) for different discretizations are
different; for example, in the standard reduced units
(S� � T�=��, T� � kTDann=e2, and �� � �v, where v
is the volume per ion) S�� � 1:62 and S�� � 3:2 for n ����
2

p
and n � 2, respectively.
060601-2
The actual instability corresponds to singularity of
h ~���kb	 ~����kb	i, with the Boltzmann factor exp����	.
Beyond the MF h ~���k	 ~����k	i contains, in addition
to ~CC0�1

�� �k	, the contribution
P
nanG

n, where G �R
k
~CC0�1
�� �k	, and less relevant terms [6,12]. Because

~CC0�1
�� �k	 ! 1 for k ! kb when TE=� � S�, the value

of G depends on the position and the region of kb in k
space. In continuum kb form a surface of finite area [4,13]
and G diverges when TE=� � S�. The MF approximation
breaks down when G diverges, and the fluctuation-in-
duced first-order phase transition can be expected
[12,14]. On the sc lattice kb � !��1;�1;�1	, i.e., kb
form the vertices of the cubic domain in k space [4,13].
For n � 2 we find, using the appropriate choice for
g�jx� x0j	 that kb are isolated vectors located inside
the domain. G is finite in both models. A more detailed
analysis of these two models [15] is based on a trans-
formation of the functional of the single critical field
~���k	, with several critical vectors kib � 0, to a functional
of several fields ~  i�q	, with q � 0 for the critical modes
[16,17]. On the sc lattice the functional can be reduced to
the standard ‘‘’4’’ Landau functional, and the transition
remains continuous. For n � 2 the functional reduces to
the functional similar to the one obtained for type II
antiferromagnets [18], and there is no stable fixed point
of the renormalization-group flow equations [15]; there-
fore the transition should be first order.

The instability of the disordered phase is induced either
by ��x	 / cos�kb � x	 or by the whole spectrum of the
charge fluctuations, associated with the shift of the num-
ber density of ions [4]. The latter instability can be found
after the charge fluctuations are integrated out [4]. Hence,
the spinodal line has two branches; the low-density part
of the spinodal is associated with a phase separation into
two uniform (charge-disordered) phases [4,9] and de-
pends on the presence and the kind of the underlying
lattice rather weakly [19]. The high-density branch of
the spinodal has different slopes S�� on different lattices
already in the MF. Moreover, the larger the volume of
dominant fluctuations, k � kb, in k space, the larger the
shift of the spinodal line compared to the MF prediction.
For small slopes of the high-density branch of the spino-
dal the phase diagrams should have the form shown in
Figs. 1(b) and 1(d). The diagrams obtained for n � 1; 2
and in continuum are shown in Figs. 1(a), 1(c), and 1(d),
respectively. They all agree with simulations [2]. The
diagram shown in Fig. 1(b) has been obtained in simu-
lations [5] for the RPM supplemented with dispersionlike
forces.

Let us analyze model I for the whole range of densities.
For the reference system in (2) we assume the form of Fsr
derived in Ref. [20]. The reference system undergoes a
transition to a nonuniform state at �0 � 0:18 [20]. In the
nonuniform phase two sublattices are formed, with differ-
ent density at each sublattice. For �0 > 0:3 only the
lattice points x � xiei whose coordinates are �i� j; i�
k; j� k	, where i; j; k are integer, are not empty. The
060601-2
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FIG. 2. (a) Schematic phase diagram for model I. The dotted
line is the line of the metastable transition between the charge-
disordered and charge-ordered phases. The whole phase dia-
gram contains the gas-liquid and the order-disorder transitions
[Fig. 1(d)], the formation of the fcc solid, determined by the
uncharged reference system, and the order-disorder transition
in the fcc solid. We assumed that the charge-ordered phase
coexisting with the liquid phase has the bcc structure. (b)
Charge-ordered fcc structure [denoted by ‘‘fcco’’ in (a)], given
by Eq. (7) with q � !=2 and w � �1� i	=

���
2

p
.

T

(a)

(c)

(b)

(d)
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FIG. 1. Generic types of phase diagrams in the RPM for
different space discretizations for low and intermediate con-
centrations of ions �. Solid and dashed lines are first-order
and continuous transitions, respectively, and the dashed-dotted
lines are the spinodals associated with the gas-liquid and order-
disorder transitions. The dashed lines are given by Eq. (5) in
MF, and, as discussed below, their slopes are decreased by
fluctuations [15]. The low-density parts of the spinodals are
given by the formal expression derived in Ref. [4]. In (c) and (d)
the spinodals should be similar to those shown in (a) and (b),
respectively, but their precise location (beyond MF) has not
been determined yet. Solid lines are schematic. The low-density
phases are charge disordered, and the high-density phases are
charge ordered. The charge-disordered phase undergoes a tran-
sition into ion-diluted and ion-dense phases in the cases (b) and
(d). There are two variants in case (b), depending on the shape
of the high-density branch of the spinodal line; namely, the line
of continuous transitions can meet the line of first-order tran-
sitions at the critical endpoint, or at the tcp.
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occupied sublattice has the fcc structure, with the linear
size of the unit cell afcc � 2a. Simple algebra described
in [15] shows that the instability of the charge-disordered
phase is associated with the bifurcation vectors kb �
�0;�!; q	 (and vectors obtained by permutations of the
above coordinates). In real space the critical fluctuations
have the form

��i� j; i� k; j� k	 � ��1	i�k	fRe�w	 cos�q�j� k	


� Im�w	 sin�q�j� k	
g;

(7)

where ww� � 1. The structure found in simulations in the
continuum RPM at close packing in Ref. [11] is given by
Eq. (7) with q � !=2 and w � �1� i	=

���
2

p
. G diverges at

the MF line of instability [15], and the fluctuation-in-
duced first-order phase transition can be expected, in
agreement with simulations [21].

In the low-density, fluid regime (�0 < 0:18), the tcp can
be obtained numerically in the MF from the condition
A4 � 0, Eq. (6) and from the form of ~CC0

�� given in
Ref. [20]. The result is

�tc � 0:0608; and ��
tc � 0:12: (8)
060601-3
��
tc is quite close to ��

tc � 0:1, the value obtained within
analogous treatment [13] of the continuum RPM using a
Percus-Yevick reference-system approximation. In the
RPM reduced units S�� � 1:62, i.e., very close to S�� �
1:61 found in the continuum RPM. Moreover, the coor-
dinates kib of the bifurcation vectors satisfy the equation
[15]

X3
i

coskib � const � 1:29; (9)

i.e., form a surface of finite area and G diverges, as in the
continuum model. Such fluctuations should lead to a very
large shift of S��, and to the fluctuation-induced first-order
phase transition, hence —to the phase diagram shown in
Fig. 1(d).

Let us focus on T ! 0. The charge-ordered fcc struc-
ture, shown in Fig. 2(b), is stable for �0 � 1=2. At �0 �
1=4 only the sites with integer coordinates �i� j� k; i�
j� k;�i� j� k	 are occupied. These sites form a bcc
sublattice, with the lattice constant of the unit cell abcc �
2a. This bcc sublattice splits again into two sublattices,
one positively, the other one negatively charged. At very
low T one should expect stability of the bcc charge-
ordered solid, whose electrostatic energy is low, then
bcc—gas (vacuum) phase coexistence at lower densities,
and bcc—fcc phase coexistence at higher densities. It is
instructive to consider the order-disorder transition on
the bcc sublattice. Using the appropriate form of ~VV and
the method described above, we find that in MF S�� �
3:98. At T higher than the transition temperature, the bcc
charge-disordered phase is more stable than the charge-
ordered phase. However, the stability of the charge-
disordered phases is entirely determined by the uncharged
reference system. In the latter the stability of the bcc solid
060601-3
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(bcc sublattice occupied) is not expected [20]. We can
conclude that at temperatures higher than the charge-
ordered–charge-disordered transition line on the bcc sub-
lattice, the fluid phase is stable in model I. We identify the
fluid—charge-ordered bcc solid transition with the fluc-
tuation-induced first-order order-disorder transition dis-
cussed before. Our results for model I are summarized in
Fig. 2(a). Note the close similarity to the diagram ob-
tained in simulations for the continuum RPM [11] for the
whole range of densities. The n � 1 model can be trans-
formed continuously into model I, if a repulsion between
nearest neighbors of a strength J > 0 is present, and the
Hamiltonian on the sc lattice has the form

HJ �
1

2

X
x

X
x0�x

Vc�jx� x0j	ŝs�x	ŝs�x0	

�
J
2

X
x

X
x0�x�ei

ŝs2�x	ŝs2�x0	 ��
X
x

ŝs2�x	: (10)

The probability that the nn lattice sites are occupied is
/ e��J, hence it vanishes for J � 1, and we obtain
model I. For the model given by (10) we include the nn
repulsion in the reference system, for which the Bethe
approximation [22] is assumed. For U in (3) we assume
the form of g consistent with the above approximation,
namely, g�jx� x0j	 � 0 if x � x0, g�jx� x0j	 �
exp���J	 � 1� p if x� x0 � �ei, and g�jx� x0j	 �
1 otherwise. Using the method described above we find
that kb � ��!;�!;�!	, as for n � 1, as long as p �
p0, with p0 � 0:0807 [15], whereas for p � p0,P

3
i cosk

i
b � 3�1� 2

�����������
p0=p

p
	, i.e., kb form a surface, as

for model I. For p � p0 the crossover between continuous
and first-order order-disorder transition occurs, due to a
change of the fluctuation volume in k space. In the MF
both �tc and S� (for p � p0) decrease for increasing p.
Whether the critical point becomes stable for p smaller or
larger than p0 depends on the exact value (beyond MF) of
S��. Further studies are required to verify whether the
sequence of phase diagrams in Fig. 1 is �a	 ! �b	 ! �d	,
or �a	 ! �c	 ! �d	, as p increases.

The phase behavior in the RPM is determined by the
charge fluctuations—the dominant ones, ~���kb	, leading
to the order-disorder transition, and by the whole spec-
trum, leading to the gas-liquid separation [4]. The order
[compare Figs. 1(a) and 1(b) with Figs. 1(c) and 1(d)] and
the location [compare Figs. 1(a) and 1(c) with Figs. 1(b)
and 1(d)] of the order-disorder transition are determined
by the position and extension of the region occupied by kb
in k space. As we have shown, both the position and the
extension of kb depend crucially on space discretization.
It is the order-disorder transition, which depends on dis-
cretization, and the location of this transition determines
whether the critical point is stable or metastable.
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