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We propose an effective scheme for fast conformational searches by combining the replica exchange

TPt

method (REM) with the generalized effect potential concept. The present method introduces the “g

value from the effective potential as a coupling parameter. It is found that the new method not only
requires a much smaller number of replicas than the conventional REM, but also makes it possible to
perform effective conformational sampling of complex systems with correct distributions maintained.
The advantage of the present method has been demonstrated with in vacuo alanine dipeptide using a

molecular dynamics simulation.
DOI: 10.1103/PhysRevLett.91.058305

Recently, there has been considerable progress in
developing efficient conformational sampling schemes
for polymers and proteins. Usually, conventional molecu-
lar dynamics (MD) or Monte Carlo (MC) simulation
methods for biomolecules cannot produce sufficient con-
formational sampling for canonical distribution at physi-
ological temperature, since systems tend to be trapped in
local energy minima due to the nature of the complex
potential energy landscapes. In order to circumvent these
sampling problems, various simulation strategies have
been proposed by introducing non-Boltzmann weighting
factors [1-3]. In particular, the replica exchange method
(REM) [4,5] is considered to be one of the most promis-
ing and efficient methods to sample conformational states
of biomolecules [6—8]. In REM, several independent tra-
jectories, called replicas, are generated at different tem-
peratures, and stochastic exchanges between neighboring
trajectories are attempted with predetermined intervals
during the simulation. The trajectory exchanges between
the replicas allow the system to escape from the local
energy minima easily, exploring a broad range of the
potential energy surface. This scheme is ideal for parallel
computation, since each replica can run independently on
a different processor and the communication loads be-
tween the processors are minimal due to the occasional
exchange attempts. The initial version of the method was
proposed for an MC scheme and later Sugita et al. [7] de-
veloped an MD version. Despite its usefulness, the main
disadvantage of REM is that it requires a large number of
replicas because the energy distributions between neigh-
boring replicas need to have a considerable overlap to
have a reasonable acceptance ratio. This is a major ob-
stacle especially with an all-atom based potential. In the
conventional REM, the number of replicas scales as /2,
where f is the number of the system’s degrees of freedom
[9,10]. For example, Zhou et al. [11] employed a total of
64 replicas to study all-atom based S-hairpin folding of a
small 16-residue peptide in the presence of explicit water.
Recently, a couple of variants of REM have been reported
[9,12]. Fukunishi et al. [10] showed that the number of
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replicas can be reduced by assigning a different system
Hamiltonian to each replica. For protein simulations, as
one possible choice they introduced a degree of ‘““hydro-
phobicity” in the Hamiltonians for “coarse-grained”
protein models.

In this Letter, we propose a new Hamiltonian REM for
all-atom based protein simulations by introducing the
generalized effective potential concept [13—15]. The gen-
eralized effective potential U,(r, €) can be obtained by a
simple nonlinear transformation of any empirical poten-
tial energy function:

U, €) = In{l + B(g — DIUEY) + €]}, (1)

I
Blg—1)
where U(r") is the original empirical potential in
N-dimensional configurational space r", 8= 1/kzT with
Boltzmann constant kg and temperature 7, ¢ is a real
number, and € is an adjustable energy shift parameter.
The transformed energy reproduces the original potential
energy, as the g parameter approaches 1.0. As ¢ is larger
than 1.0, this transformation effectively reduces the po-
tential energy barriers, providing much smoother poten-
tial energy functions. This has been illustrated in Fig. 1
for a random one-dimensional potential energy [16]. In
general, for a given set of g and €, the transformation in
Eq. (1) is related to increasing (¢ > 1.0) or decreasing
(g < 1.0) an effective temperature of the system B’, such
that [15]
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In our proposal REM scheme, each replica samples the
conformational space on Uq(rN , €), and the correspond-
ing effective Hamiltonian is

H,(p", ", €) = T(p") + U, (x", €. 3)

Unlike the ordinary REM where each replica runs
independently at different temperatures, in this new
REM each replica runs at a single target temperature on
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FIG. 1. The random one-dimensional potential energy U(x)

and its effective potential U,(x, €) defined in Eq. (1) with a
choice of € = 6.0 and k3T = 1.0. The solid line is the original
potential energy (¢ = 1.0). One can observe that the potential
energy barriers are reduced, while the positions of local
minima and maxima remain intact, as g becomes larger than
1.0. Also note that the potential energy barriers are more
pronounced for ¢ < 1.0.

the potential energy surfaces U, with different ¢ values.
Of course, during the replica exchange procedure, the
detailed balance condition needs to be satisfied.
Following the treatment of Sugita et al. [7], the weighting
factor of state X consisting of M replicas is given by

M
Wrem(X) = exp|: - Z BH,,(p", ", 6)} 4)
i=1

where g; is the proper g value assigned to the ith replica.
Now consider a trajectory exchange procedure between
replicas i and j and denote the new state resulting from the
exchange attempt as X’. In order to satisfy the detailed
balance condition, the transition probability p for the
replica exchange needs to satisfy

Wrem(X)p(X — X') = Wrpn(X)p(X' — X).  (5)

Thus, the replica exchange probability p(X — X') is sim-
ply given by
p(X — X’) = min[1, exp(—A)], (6)

where A = B[U,, (X)) + U, (X)) = U, (X;) = U, (X;)] and
U, (X;) is the transformed potential energy of the jth
replica at state X with g;.

In our method, the g value for one of the replicas is
always set to 1, so that the corresponding replica retains a
canonical distribution. Hereby, we denote the ordinary
REM as -REM and the present method as g-REM.

We tested g-REM with a one-dimensional asymmetric
double-well model system [17]

Ux) = [(x+ 1) = 1][(x — 1)> = 0.9]. @)
The analytic expression for the corresponding ca-

nonical position probability distribution P is P(x)=
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Cexp[—BU(x)] with normalization factor C. Through-
out this study, we have used MD instead of MC as a
sampling method and this can be easily achieved by
introducing a force scaling factor in the MD scheme
[18]. We have used a single particle of unit mass at 8 =
5.0. The MD time step was 0.002 in reduced unit and the
initial 1 X 10° MD steps were discarded from the sam-
pling to ensure pseudoequilibration. A total of 5 X 10°
MD steps were included in our MD sampling. The Nosé-
Hoover thermostat with a chain length of two [19-21]
was used to keep the system at a constant temperature.

Figure 2 shows the position probability distributions
obtained from the present scheme, the analytical expres-
sion, and the usual canonical MD simulation along with
the double-well potential energy given by Eq. (7). With a
choice of € = 250, only two replicas were included in our
calculation with corresponding ¢ values of 1.000 and
1.005. The replica exchange was attempted every
100 MD steps and the resulting acceptance probability
was about 29%. Obviously, the conventional MD trajec-
tory is trapped in one of the potential wells, producing an
incorrect probability distribution, while g-REM generates
a distribution identical to the analytic one.

Using the all-atom AMBER parm99 force field [22],
we applied g-REM to in vacuo alanine dipeptide termi-
nally patched with acetyl and N-methyl groups [23-25]
at 100.0 K. In general, the empirical potential energy
function is given by

U(rN) = Ubond(rN) + Uangle(rN) + Udihedral(rN)

+ Unb()nd (rN)’ (8)

where Upondgs Uangles Udinedrals @0d Uppona are the bond
stretching, the angle bending, the dihedral rotation, and
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FIG. 2. The model potential of a one-dimensional asymmet-
rical double well and its position probability distributions from
various simulations. The dot-dashed line represents the model
potential. The position probability distributions at 8 = 5.0 are
shown with a dashed line (canonical MD), a solid line
(g-REM), and a dotted line (analytic expression). The g-REM
distribution is almost indistinguishable from the analytical
result.
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the nonbond energy terms, respectively. Note that
U bona () consists of both van der Waals and electrostatic
interaction terms. Since the dihedral and the nonbond
energy are mainly responsible for conformational change,
we applied the transformation in Eq. (1) to only the terms
Uginedra @nd Uppona- The resulting effective potential
U,(x", e) [18] is

Uq(rN» €) = Ubond(rN) + Uangle(rN)

+ In{1 + B(g — D[ Uginedral (")

9
Blg —1)
+ Unbond(rN) + 6]} (9)

We performed the simulations starting from a fully
stretched conformation. In -REM, at least a total of five
replicas were needed with corresponding temperatures of
100.0, 123.0, 148.0, 178.0, and 213.0 K, respectively. We
employed the Berendsen thermostat [26] with a coupling
parameter of 0.5 ps. Starting from the structure described
above, each replica was subject to another 100 ps MD run
with its own temperature without replica exchanges.
Then, as a production run, the ~-REM simulations were
carried out for 4.1 ns with the replica exchanges. After
the initial 2.1 ns trajectories were discarded, the data
collection was made with a sampling interval of 20 fs
(1 X 10° data points). As for g-REM, short trial runs are
needed in order to choose an appropriate value for € (for
more details, refer to Ref. [18]). Once the € value has been
determined, a suitable set of ¢ values can be obtained by
trial and error, until a reasonable acceptance ratio (10%—
20%) is achieved in the replica exchange. We tested
g-REM using two and four replicas with e =
30.0 kcal/mol at 7 = 100 K, and the resulting energy
distribution corresponding to g = 1.0 is exactly the
same for both cases. Thus, in terms of performance, the
q-REM with two replicas are comparable to the r~-REM
with five replicas. We used the g values of 1.000 and 1.002.
For both g-REM and -REM, the replica exchange inter-
val is 0.2 ps and the acceptance ratio is around 10%.
Figure 3 shows the energy distributions from g-REM
and -REM. In Fig. 4, we have compared the energy
distributions of ¢g-REM at ¢ = 1.0 with those of -REM
and conventional MD simulations at 100 K. As one might
expect, both g-REM and #-REM results are virtually
identical, while the ordinary MD simulation gives a se-
verely biased energy distribution, indicating that the sys-
tem is trapped at one of the local energy minima. This
observation is also confirmed by the conformation dis-
tributions of the alanine dipeptide as given in Fig. 5.

The result of the alanine dipeptide system shows that
the current method reduces the number of replicas by a
factor of 2.5 compared to the conventional REM. As our
preliminary study indicates, however, the reduction
should be more pronounced with complex systems espe-
cially in solvated environments.

058305-3

O¢4 T I T I T I T
i -—- 213.0K]|
03 —- 178.0K |
—-= 148.0K
R - 123.0K | A
— 100.0K
0.2 -
0.1F —
0 I L
-20 10 20
0.4 T I T I T I T I T I T
[ ®) 7=1.0020 |
03} — ¢=1.0000
oy 5 i
£ 02} -
e
g i _
[a%
0.1F —
0 L | L | R ] L
-20 -15 -10 -5 0 5

Energy (kcal/mol)

FIG. 3. The energy distributions of alanine dipeptide.
(a) +-REM with five replicas and (b) ¢g-REM at 100.0 K with
two replicas using the e value of 25.0 kcal/mol.

As was mentioned, the characteristic feature of the
transformation in Eq. (1) is to increase/decrease the ef-
fective temperature of the system. For ¢ > 1.0 (g < 1.0),
the selective transformation in Eq. (9) represents a tar-
geted “local heating (cooling)” to enhance (suppress)
major dynamic motions responsible for conformational
changes. However, +-REM relies on global heating (or
cooling). As a result, a significant portion of thermal
energy is used to excite all the vibrational motions which
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FIG. 4. The energy distributions of ¢-REM (g = 1.00),

t+-REM, and the normal canonical MD simulations with alanine
dipeptide at 100.0 K.
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FIG. 5. Ramachandran plot of alanine dipeptide at 100.0 K
in vacuo. Note that the normal MD trajectory is trapped in
an extended conformation, while both ¢g-REM and t-REM
explore almost the same conformational space, which repre-
sents the correct distribution of the dipeptide at the simulation
temperature.

are not necessarily crucial for conformational fluctua-
tions. Therefore, a broad energy spectrum spanned by
REM can be created more effectively by the current
strategy. We expect that this new scheme could provide
an efficient conformational search tool with considerably
fewer CPUs, making it feasible to investigate rather large
protein folding problems with all-atom based potentials.
Furthermore, one can extend this method by combining it
with #-REM. Presently, applications of the current
method to more realistic protein folding problems are
under way.
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