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Defect-Mediated Turbulence in Systems with Local Deterministic Chaos
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Defect-mediated turbulence is shown to exist in media where the underlying local dynamics is
deterministically chaotic. While many of the characteristics of defect-mediated turbulence, such as the
exponential decay of correlations and a squared Poissonian distribution for the number of defects, are
identical to those seen in oscillatory media, the fluctuations in the number of defects differ significantly.
The power spectra suggest the existence of underlying correlations that lead to a different and
nonuniversal scaling structure in chaotic media.
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order statistics like the PDF of n and creation and
annihilation rates. Moreover, theoretical investigations

not affect the dynamics [14]. Even though the WR model
is very simple, it exhibits a phenomenology [15] with
Weakly driven, dissipative, pattern-forming systems
often exhibit spatiotemporal chaos in the form of
defect-mediated turbulence, where the dynamics of a
pattern is dominated by the rapid motion, nucleation,
and annihilation of point defects (vortices or disloca-
tions) [1]. Examples can be found in electroconvection
in liquid crystals [2], nonlinear optics [3], fluid convec-
tion [4,5], autocatalytic chemical reactions [6], cardiac
tissue [7], and Langmuir circulation in the oceans [8], to
name only a few. These results suggest that the dynamics
of these very different systems can be characterized by a
universal description which is based only on the defect
dynamics.

A statistical description of defect-mediated turbulence
based on a simple model for the defect dynamics was
given by Gil et al. [9]. Treating the defect pairs as statis-
tically independent entities, the nucleation rate for pairs
of defects was taken to be independent of the number of
pairs n and, based on the topological nature of the de-
fects, the annihilation rate was taken to be proportional to
n2. This directly led to a squared Poissonian distribution
for the probability distribution function (PDF) of n. Gil
et al. found that simulations of a spatiotemporal chaotic
state of the complex Ginzburg-Landau equation (CGLE),
which is the prototype of oscillatory media, agreed with
their prediction. Rehberg et al. [2] measured the PDF of n
for defect-mediated turbulence in electroconvection of
liquid crystals and found it to be consistent with the
predicted squared Poissonian. Later, Ramazza et al. [3]
investigated a defect turbulent state in optical patterns
and found that their data were not conclusive. Very
recently, Daniels and Bodenschatz [5] studied the
defect-mediated turbulent state of undulation chaos in
fluid convection and found that the observed pair nuclea-
tion and annihilation rates as well as the PDF agree with
the theoretical predictions in [9] when boundary effects
are taken into account.

The experimental and theoretical studies of defect-
mediated turbulence have focused exclusively on first-
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have been carried out only for media with underlying
oscillatory dynamics, generically described by the
CGLE. Yet, in many cases the local dynamics may differ
from simple oscillatory behavior; instead, complex-
periodic or even chaotic attractors may exist (see, e.g.,
Ref. [10]). Chemically reacting systems, notably the
Belousov-Zhabotinsky (BZ) reaction, are known to ex-
hibit deterministic chaos [11]. This leads to a variety of
new spatiotemporal states [12]. In this Letter, we show
that defect-mediated turbulence can exist in media where
the underlying local dynamics is chaotic and that second-
order statistics can be used to distinguish between differ-
ent media. This implies that a universal description of
defect-mediated turbulence cannot encompass second-
order or higher correlations.

Our focus is on systems where the dynamics of
the spatially homogeneous system, described by ordinary
differential equations, has a deterministic chaotic attrac-
tor; hence, at least three phase space variables are
required in contrast to the two-variable descriptions
of simple oscillatory media. A specific example of such
a chaotic system is the Willamowski-Rössler (WR)
reaction-diffusion model [13]

@tc�r; t� � R�c�r; t�� �Dr2c�r; t�; (1)
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3. These rate equations

were derived from the mass action kinetics of a reaction
scheme with quadratic kinetics where certain pool species
are taken to be fixed. Here ci�r; t� is the local concen-
tration of species i at site r in a two-dimensional (2D)
space of size L2 with periodic boundary conditions. The
parameters �	j are rate coefficients that contain the con-
centrations of the pool species that are fixed to maintain
the system out of equilibrium. The diffusion coefficients
D of all three species are taken to be equal: D � 1. In this
case, the value of D determines the spatial scales but does
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FIG. 1. Left: projection of the chaotic attractor in the �c1; c2� plane of the homogeneous WR model for �1 � 31:2; ��1 �
0:2; �2 � 1:45; ��2 � 0:072; �3 � 10:8; ��3 � 0:12; �4 � 1:02; ��4 � 0:01; �5 � 16:5; ��5 � 0:5. Snapshots of the inhomogene-
ous c field in the defect turbulent state closely resemble this attractor. Center: phase field for L � 128 [16]. Right: normalized
correlation function in the defect-mediated turbulent state for L � 128 and different values of ��2.

FIG. 2. Left: n�t� for the parameters given in Fig. 1 and L �
128. Right: normalized histogram h�n�. The solid curve is the
corresponding squared Poissonian distribution.
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many features in common with those observed in chemi-
cal experiments on the BZ reaction [12]. Consequently,
this model may be expected to capture the qualitative
features of chemical systems whose chaotic attractors
arise from a period-doubling cascade. The chaotic attrac-
tor is shown in the left panel of Fig. 1.

A defect is characterized by its integer topological
charge (or winding number) mtop which is defined by
1
2�

H
r��r; t� 
 dl � mtop [17], where ��r; t� is the local

phase and the integral is taken along a closed curve
surrounding the defect. A topological defect corresponds
to a point in the medium where the local amplitude is zero
and the phase is not defined. Typically only topological
defects with mtop � 	1 are observed. One-armed spiral
waves with such defects at their centers are the only stable
spiral waves for the CGLE [18]. The phase has to be
defined in order to apply the notion of defects to chaotic
media. This is not a trivial issue and for many chaotic
systems it is impossible to introduce a phase field. The
rather simple shape of the WR chaotic attractor (see left
panel of Fig. 1) which arises from a period-doubling
cascade admits a simple definition of the phase and the
WR model belongs to the class of chaotic-oscillatory
media which is well-known from the study of
phase synchronization (see Ref. [19] for a review). We
chose ��r; t� � arctanf�c2�r; t� � c02�=�c1�r; t� � c01�g with
�c01; c

0
2� � �8:0; 9:0� as the center of rotation. For such

simple chaotic attractors, the particular choice of a phase
variable for chaotic systems does not influence the results
[20]. In the center panel of Fig. 1, the phase field of the
WR medium is shown for a certain set of parameters [16].
The topological defects can be identified as the termini of
the white equiphase contour lines. As for the CGLE in the
defect-mediated turbulent state [21,22], the defects in
the WR system for these parameter values rarely emit
waves. They behave as passive objects and are merely
advected by the surrounding chaotic fluctuations. The
right panel in Fig. 1 shows the correlation function
C�j�rj� � hRe�A�r; t� �AA�r��r; t��ir;t, where A�r; t� is
the complex amplitude in the �c1; c2� plane with respect
to the center of rotation and h
 
 
ix signifies an average
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over the (optional) argument x. It decays exponentially
with a very short characteristic length scale, verifying the
existence of a turbulent state. This is the most typical
characteristic for defect-mediated turbulence and has
been found in the CGLE as well [1].

The fluctuations in the number of pairs of topological
defects shown in the left panel of Fig. 2 provide further
evidence that a defect-mediated turbulent state can exist
in chaotic-oscillatory media. The total number of defects
in the medium is exactly twice the number of pairs
because the net topological charge is conserved and equal
to zero due to the periodic boundary conditions. Hence,
topological defects can be created and annihilated only in
pairs of opposite topological charge. One can easily de-
rive a PDF p�n� for the number of defect pairs provided
that the defects are statistically independent entities [5,9].
In the stationary state and for periodic boundary condi-
tions, the master equation reduces to p�n� � p�n�
1�c�n� 1�=a�n�, where c�n� and a�n� are the creation
and annihilation rates, respectively. Provided that c�n� �
c � const and a�n� � an2, p�n� / �c=a�n=�n!�2. The right
panel of Fig. 2 shows that the PDF for the WR model
agrees with the predicted form of a squared Poissonian
distribution reasonably well. Moreover, the assumptions
leading to this distribution seem to be justified: the anni-
hilation rate scales approximately with n2 and the crea-
tion rate is approximately independent of n as can be
deduced from Fig. 3.
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FIG. 3. Left: c�n� in the WR system for the parameters given
in Fig. 1 and L � 128. The solid line corresponds to a constant
creation rate. Right: a�n� in the WR system for the same
parameters. The solid line corresponds to an increase in the
annihilation rate proportional to n2.
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The fluctuations in the number of defect pairs do not
have the properties one would expect if they arose
from independent random events. If this were the case
the power spectrum SL�f� � limT!1

1
2T j

R
T
�T dt n�t� �

exp�i2�ftj2 for system size L would have a Lorentzian
shape. The power spectrum does not have this form for
the defect-mediated turbulence in theWR model. Figure 4
shows that SL�f� / 1=f� for intermediate frequencies
with an exponent � that is far from the value � � 2
expected for a Lorentzian shape. For k�2 � 0:072, we
find � � 1:43 and, for k�2 � 0:075, � � 1:60 [23]. Al-
though in both cases the system exhibits defect-mediated
turbulence, the exponents are significantly different from
each other. This implies that different chaotic-oscillatory
media can have different second-order statistics. To con-
firm that these results are not specific to the WR model,
we have also studied the autocatalator reaction-diffusion
system [24,25] which also has a chaotic attractor arising
from a period-doubling cascade but with very different
Lyapunov spectra. We find a power-law decay with values
of � that are similar to those reported here for the WR
model [26]. These results suggest that the power spectrum
of n�t� may exhibit power-law decay with nontrivial
exponents for defect-mediated turbulent states when the
local dynamics exhibits deterministic chaos.

For large enough system sizes, SL�f� / L2 for all f;
thus, the power spectrum for large systems can be con-
FIG. 4. Left: power spectrum of n�t� for different parameters in W
by one decade. The thick lines are to guide the eye. The thick so
� � 1:60. Center: power spectrum of n�t� for different parameters i
decays with � � 1:9. Right: normalized pair correlation function
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sidered to be the superposition of the power spectra of
subsystems which is expected in view of the short corre-
lation length. It implies that �hn2i � hni2�1=2 scales as�������
hni

p
, which is proportional to L. Such a scaling is a

consequence of the law of large numbers and has been
observed for the CGLE as well. It follows that � and the
low-frequency cutoff—which is due to the fact that n�t� is
bounded—are independent of L. The cutoff ’s location
depends on the density of defects in the medium. For
lower densities it moves to lower frequencies.

To compare our results for SL�f� in chaotic media with
those in oscillatory media, we simulate the CGLE [1,21]

@tA � A� �1� i��r2A� �1� i��jAj2A; (2)

in a domain of size L2 with periodic boundary conditions
[16]. Here, A is the complex amplitude field and � and �
are control parameters. The power spectrum of the CGLE
in the defect-mediated turbulent state has a power-law
decay for intermediate frequencies, and the scaling of
SL�f� with L2, as well as the dependence of the low-
frequency cutoff on the density of defects, agrees with
those in the WR medium. Yet, as Fig. 4 shows, � � 1:9
[23] which is very different from the values observed for
the chaotic media we analyzed. Thus, different media can
have different second-order statistics for n�t� depending
on the underlying local dynamics. This argues against a
universal description of defect-mediated turbulence. We
note that the exponent for oscillatory media is extremely
close to 1.87—the value we found for the simple model of
Gil et al. Thus, even second-order statistics of oscillatory
media can be quite well described by a purely random
process where the interaction between defects of opposite
charge is restricted to annihilating collisions.

To understand how the nontrivial correlations in n�t� at
intermediate time scales for theWR model arise, we have
analyzed the series of waiting times between consecutive
creation events and consecutive annihilation events sepa-
rately. In both cases, the waiting times are exponentially
distributed and statistically uncorrelated as for a random
walk. This implies that the correlations in n�t� are due to
the interaction of creation and annihilation events. This is
R. For clarity, the curve for ��2 � 0:075 has been shifted down
lid line decays with � � 1:43 and the thick dotted line with

n the CGLE and L � 128. The thick line is to guide the eye and
h�j�rj=r0� with r0 �

��������������
L2=hni

p
.
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further confirmed by the normalized pair correlation
function for the defects, defined as [27]

h�j�rj� �
hn��r; t�n��r��r; t�ir;t

hni2
� 1; (3)

where n�����r; t� is the number of defects with mtop �
�1��1� at site r at time t. This function is shown in Fig. 4.
For the CGLE, the first peak and its decay are very
similar to what one would expect for a process where
the motion of single defects is basically unaffected by
defects of opposite charge as long as they do not collide:
The peak is mainly due to the creation of pairs and decays
to zero approximately proportional to 1=r as expected in
2D. In contrast, h�j�rj� for the WR model has a pro-
nounced negative value in the vicinity of j�rj � 0:1r0.
These strong anticorrelations imply that, with high
probability, defects with opposite topological charge an-
nihilate each other directly after their creation, or they
separate quickly. This manifests itself in the behavior of
n�t� and is likely responsible for the nontrivial exponents
in the power spectrum.

We have shown that defect-mediated turbulence can
arise both in oscillatory and chaotic-oscillatory media
and, thus, applies to a broad range of systems. While most
common diagnostic measures do not allow one to distin-
guish between oscillatory and various chaotic media, the
fluctuations in the number of defects can be different for
different media: for the CGLE they resemble those of a
simple creation-annhilation random process; for the WR
and autocatalator models pronounced nontrivial correla-
tions exist. Our results may be tested experimentally on
systems like the Belousov-Zhabotinsky reaction whose
local temporal dynamics can be complex periodic or even
chaotic [12], and where defect-mediated turbulence has
been observed [6].
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