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Bipartite quantum states are classified into three categories: separable states, bound entangled states,
and free entangled states. It is of great importance to characterize these families of states for the
development of quantum information science. In this Letter, I show that the separable states and
the bound entangled states have a common spectral property. More precisely, I prove that for undis-
tillable —separable and bound entangled—states, the eigenvalue vector of the global system is
majorized by that of the local system. This result constitutes a new sufficient condition for distillability
of bipartite quantum states. This is achieved by proving that if a bipartite quantum state satisfies the
reduction criterion for distillability, then it satisfies the majorization criterion for separability.
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AB A an operator C such that A � B C and kCk1 � 1.
The recent development of quantum information sci-
ence [1–3] has unveiled the rich structure of quantum
states, in particular, the nature of quantum entanglement.
It is well acknowledged that the quantum entanglement is
a physical resource in various types of quantum informa-
tion processing such as quantum cryptography [4], quan-
tum dense coding [5], quantum teleportation [6], and
quantum computation [7]. From the viewpoint of entan-
glement as a resource, bipartite quantum states are clas-
sified into three categories: separable states that are not
entangled, bound entangled states, and free entangled
states [8]. This categorization is well understood through
local quantum operations and classical communication
(LOCC). One of the most important LOCC protocols is
the entanglement distillation or purification that allows us
to extract pure maximally entangled states from several
copies of a given free entangled state [9–12]. However,
the distillation protocol does not work for bound en-
tangled states. In spite of the practical importance of
the distinction between free entangled states and bound
entangled states, this distillability problem still remains
open [13–16].

It is known that all states which violate the so-called
reduction criterion [17,18] are distillable. The reduction
criterion asserts that if a bipartite quantum state �AB on a
composite Hilbert space H A �H B is undistillable, then
the following operator inequalities are satisfied:

�A � IB � �AB (1)

and

IA � �B � �AB; (2)

where �A�B� � TrB�A��AB is the reduction of �AB, and IA�B�
is the identity operator on H A�B�. The reduction criterion
is also a necessary and sufficient condition for separabil-
ity in low dimensional composite states with dimH A�2
and dimH B � 2 or 3. Recently, Nielsen and Kempe [19]
proposed a new criterion for separability — the majoriza-
tion criterion which asserts that if �AB is separable, then

��� � � ��� � (3)
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and

���AB� � ���B�; (4)

where ���AB� is a vector of eigenvalues of �AB; ���A� and
���B� are defined similarly. The relation x � y between
n-dimension vectors x and y, which reads ‘‘x is majorized
by y,’’ means that

Xk

i�1

x#i �
Xk

i�1

y#i �1 � k � n	 1�; (5)

and
Xn

i�1

x#i �
Xn

i�1

y#i; (6)

where x#i �1 � i � n� are components of vector x re-
arranged in decreasing order (x#1�x#2�


�x#n); y#i �1 �
i � n� are defined similarly. If the dimensions of x and y
are different, the smaller vector is enlarged by appending
extra zeros to equalize their dimensions [20]. In Eqs. (3)
and (4), ���A� and ���B� are considered enlarged vectors
with dimensions the same as that of ���AB�. The majori-
zation criterion has an intuitive physical interpretation;
the separable states are more disordered globally than
locally, as stated in the title of Ref. [19].

Now a question arises: in which ways are these two
(reduction and majorization) criteria related? It has been
conjectured that the majorization criterion is implied by
the reduction crierion, but this has not been proven
[14,16,21]. In this Letter, I prove that this conjecture is
true. Furthermore, from this result I propose a new cri-
terion for distillability. As for the first result, I report the
following theorem.

Theorem 1.—If �AB is a density matrix such that �A �
IB � �AB, then ���AB� � ���A�.

Before proving Theorem 1, I will present two lemmas
and the generalization of the majorization concept.

Let A and B be Hermitian operators acting on a finite
dimensional Hilbert space. The following holds.

Lemma 1.—If 0 � A � B and B > 0, then there exists
1=2 1=2
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Here, kCk1 is the operator norm of C and is defined as
kCk1 � supkxk�1kCxk.

This lemma is a weak version of Douglas’s theorem
[22]: (i) the inequality AAy � BBy holds if and only if
there exists an operator C such that A � BC, and (ii) if (i)
is valid, then there exists a unique C such that kCk1 � 1.
Although Douglas’s original proof is mathematically so-
phisticated, I can show a very simple proof of Lemma 1.

Proof of Lemma 1: Since B > 0, B	1=2 is well defined
and the inequalities 0 � A � B are equivalent to I �
B	1=2AB	1=2 � CCy � 0 with C � B	1=2A1=2. Hence,
kCk1 � 1 (e.g., Lemma V.1.7 in Ref. [23]). Therefore,
the proof of Lemma 1 is completed. �

Lemma 2.—A bipartite density matrix �AB on H A �
H B is written as �AB � �0

AB � 0. Here, the zero opera-
tor 0 acts on Ker��A� �H B and �0

AB acts on Ker��A�
? �

H B, i.e., the orthogonal compliment of Ker��A� �H B,
where Ker��A� is the kernel of �A defined as Ker��A� �
fj i;�Aj i � 0g.

Note that �0
AB is an invertible density matrix in the

restricted subspace Ker��A�? �H B. The following proof
is due to Audenaert [24].

Proof of Lemma 2: Let jxi (jyi) be a state vector in
Ker��A� (H B). Since jyihyj � IB and jxihxj; �AB � 0,
we have

0 � hx; yj�ABjx; yi � TrAB��jxihxj � IB��AB� � hxj�Ajxi

� 0 (7)

so that �ABjx; yi � 0. Therefore, �ABj i � 0 for every
state vector j i 2 Ker��A� �H B because j i is written
as a superposition of jx; yi with jxi 2 Ker��A� and jyi 2
H B. That is, �AB � 0 on Ker��A� �H B. This completes
the proof of Lemma 2. �

Now I will describe the concept of ‘‘weak’’ majoriza-
tion. If the last equality [Eq. (6)] is also an inequality

Xn

i�1

x#i �
Xn

i�1

y#i; (8)

x is said to be weakly submajorized by y. The symbol ‘‘�’’
is now written as ‘‘�w’’: x �w y. The necessary and
sufficient condition for the relation x �w y is that there
exists an n by n doubly substochastic matrix S such that
x � Sy. The proof of this proposition can be found in
standard textbooks on matrix theory [23,25,26]. Here, an
n by n real matrix S is said to be doubly substochastic if
(i) the entries in S are non-negative; Si;j � 0; (ii) all row
sums of S are at most one;

P
n
j�1 Si;j � 1 (1 � i � n); and

(iii) all column sums of S are at most one;
P
n
i�1 Si;j � 1

(1 � j � n).
If the inequalities in (ii) and (iii) are replaced by

corresponding equalities, S is said to be doubly stochastic.
The existence of a doubly stochastic matrix such that x �
Sy is equivalent to the usual majorization relation x � y.

Proof of Theorem 1: By virtue of Lemma 2, we can
assume that �A is invertible without loss of generality.
Therefore, by Lemma 1, Eq. (1) implies the existence of
057902-2
an operator R such that

�1=2
AB � ��1=2

A � IB�R; (9)

with kRk1 � 1. It is also assumed that �A is diagonal;

�A � diag��1��A�; �2��A�; . . . ; �dA��A�� � diag���A�:

(10)

Here and hereafter, both double and single indexing are
used interchangeably to indicate entries in matrices and
in vectors of the composite system AB. The double in-
dices are enclosed in square brackets. As an example,
suppose M is a matrix acting on the composite space
H A �H B. The matrix elements are usually written on
some product basis such as M12;34 � h1Aj � h2BjMj3Ai �
j4Bi, where jiA�B�i (1 � i � dA�B�) forms an orthogonal
basis in H A�B�. Instead of using this conventional nota-
tion,M12;34 is written asM�1;2�;�3;4� orM�1;2�;�3	1�dB�4 in the
following. This notation makes the following calculations
unequivocal and easier to follow. Since �1=2

AB is Hermitian,
it is diagonalized by a suitable unitary operator V:

Vy�1=2
AB V � diag�

�����������������
�1��AB�

q
; . . . ;

�����������������������
�dAdB��AB�

q
�

� diag
���������������
���AB�

q
: (11)

Here, �i��AB� (1 � i � dAdB) are eigenvalues of �AB and
are ordered decreasingly so that ���AB� � �#��AB� with-
out loss of generality. Note that TrB�Vy�ABV� � �A in
general. From Eqs. (9) and (11), we have

d iag
���������������
���AB�

q
� Vy��1=2

A � IB�C; (12)

where C � RV, and it is also a contraction; kCk1 �
kRk1kVk1 � 1, i.e., the maximum eigenvalue of CyC
is at most one. Since the diagonal elements of a
Hermitian matrix do not exceed its maximum eigenvalue
[23,25,27], �CyC��i;j�;�i;j� � 1, i.e.,

XdA
k�1

XdB
l�1

jC�k;l�;�i;j�j
2 � 1 (13)

for 1 � i � dA and 1 � j � dB. Now, from Eq. (12)
we have

�AB � ��1=2
A � IB�CCy��1=2

A � IB�; (14)

and

d iag���AB� � Cy��A � IB�C: (15)

The diagonal elements of Eq. (14) yield

�i��A� � ��A�i;i �
XdB
j�1

��AB��i;j�;�i;j�

� �i��A�
XdB
j�1

XdA
k�1

XdB
l�1

jC�i;j�;�k;l�j
2: (16)
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Since �A is invertible, all eigenvalues of �A are strictly
positive: �i��A� > 0 (1 � i � dA). Hence,

XdB
j�1

XdA
k�1

XdB
l�1

jC�i;j�;�k;l�j
2 � 1: (17)

Equations (13) and (17) constitute the constraints on the
entries of C. To derive a linear equation between ���AB�
and ���A�, we use Eq. (15). The diagonal elements of this
equation yield

��i;j���AB� �
XdA
k�1

XdB
l�1

�k��A�jC�k;l�;�i;j�j
2: (18)

Namely,

��1��AB�; �2��AB�; . . . ; �dA��AB��
t

� S��1��A�; �2��A�; . . . ; �dA��A��
t: (19)

Here, the dA by dA matrix S is defined as

Si;j �
XdB
k�1

jC�j;k�;ij
2 � 0 �1 � i; j � dA�: (20)

The row sum of the ith row of S is calculated as

XdA
j�1

Si;j �
XdA
j�1

XdB
k�1

jC�j;k�;ij
2 � 1: (21)

The last inequality is due to Eq. (13). The column sum of
the jth column of S is calculated as

XdA
i�1

Si;j �
XdA
i�1

XdB
k�1

jC�j;k�;ij
2 �

XdAdB
i�1

XdB
k�1

jC�j;k�;ij
2 � 1: (22)

The last equality follows from Eq. (17). From Eqs. (20)–
(22), S is doubly substochastic. Hence,

��1��AB�; �2��AB�; . . . ; �dA��AB��

�w ��1��A�; �2��A�; . . . ; �dA��A��: (23)

Since �i��AB� (1 � i � dA) are the first dA largest eigen-
values of �AB, we can conclude that

Xk

i�1

�i��AB� �
Xk

i�1

�i��A� �1 � k � dAdB� (24)

with the inequality holding equality for k � dAdB due to
the obvious fact that TrAB�AB � TrA�A � 1. Since this
final conclusion is equivalent to the majorization relation,
���AB� � ���A�, the proof of Theorem 1 is completed. �

The converse of Theorem 1 is not generally true. There
is a conterexample of the maximally entangled mixed
state [28] with rank two (Example 1 in Ref. [19]).
However, there exist some families of states for which
the majorization criterion detects their entanglement per-
fectly. The isotropic states in arbitrary dimensions belong
to such examples [19].

Theorem 1 is also connected with the distillability
problem. By Theorem 1 together with the fact that all
057902-3
states which cannot be distilled satisfy the reduction
criterion [17], we immediately arrive at the following
theorem.

Theorem 2.—If �AB is not distillable, then ���AB� �
���A� and ���AB� � ���B�.

Equivalently, all states which violate the majorization
criterion are distillable. This constitutes a new sufficient
condition for distillability of bipartite states. As an ex-
ample, a family of maximally correlated states [29] of
the form

�AB �
X
i;j

�ijjiAihjAj � jiBihjBj (25)

violates the majorization criterion so that it is distillable
except when all �ij � 0 for i � j. Since �A �P
i�iijiAihiAj, the eigenvalues of �A are exactly the diago-

nal elements of �AB. Therefore, ���A� � ���AB� because
the vector of diagonal elements in a Hermitian matrix is
majorized by that of its eigenvalues [23,25,27].
Furthermore, it is evident from Theorem 2 that a bound
entangled state shares a common spectral property with a
separable state. Namely, for an undistillable (separable
and bound entangled) state �AB the global spectra ���AB�
is majorized by the local spectra ���A� and ���B�.

In conclusion, the problem of relating the reduction
criterion for distillability with the majorization criterion
for separability has been finally solved. That is, if a
bipartite quantum state satisfies the reduction criterion,
then it satisfies the majorization one as well. From this
result, I have found that for a bound entangled state as
well as a separable state the eigenvalue vector of the
global system is majorized by that of the local (reduced)
system. Furthermore, a new sufficient condition for dis-
tillabilty of a bipartite state has been proposed. I hope that
these new results trigger the discovery of new distillation
protocols and also stimulate the progress on the theory of
quantum entanglement.
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