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We propose a decoy-pulse method to overcome the photon-number-splitting attack for Bennett-
Brassard 1984 quantum key distribution protocol in the presence of high loss: A legitimate user
intentionally and randomly replaces signal pulses by multiphoton pulses (decoy pulses). Then they
check the loss of the decoy pulses. If the loss of the decoy pulses is abnormally less than that of signal
pulses, the whole protocol is aborted. Otherwise, to continue the protocol, they estimate the loss of
signal multiphoton pulses based on that of decoy pulses. This estimation can be done with an assumption
that the two losses have similar values. We justify that assumption.
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we describe the decoy-pulse method. After that, we argue
why we can assume that the loss of decoy pulses is similar

PNS attacks. In other words, yield y must be greater than
the probability pmulti of multiphoton generations in order
Information processing with quantum systems enables
certain tasks that seem to be impossible with its classical
counterparts, e.g., quantum cryptography [1–4], quantum
computation [5], and quantum metrologies [6–9]. In ad-
dition to the practical importance, this fact has great
theoretical and even philosophical implications.

The Bennett-Brassard 1984 (BB84) quantum key dis-
tribution (QKD) protocol [2,10] is one of the most prom-
ising among quantum information processing. It is
expected that it will be the first practical quantum infor-
mation processor [10].

However, a bottleneck in the practical realization of
QKD for global secure communications is distance limit:
Implementation of QKD has been successful at the order
of tens of kilometers [10]. However, as in the classical
case, quantum signals are vulnerable to noise or decoher-
ence. For long-distance QKD, therefore, it is desired that
quantum signals be amplified in the intermediate loca-
tions in the channel. However, due to the no-cloning
theorem [11–13], the task cannot be done in such a simple
manner. Fortunately, however, quantum signals can be
transported even under noisy environments to a remote
site by quantum repeaters [14]. However, it is difficult to
realize the quantum repeaters with current technologies.
Therefore, we need to relax the distance limit in QKD
without quantum repeaters. One of the most promising
candidates for this is to use surface-to-satellite free-space
BB84 QKD [15–18]. However, the surface-to-satellite
scheme would suffer high loss. High loss is a serious
threat to the BB84 protocol, due to photon-number
splitting (PNS) attack [19–23]. Thus there have been a
study [21] and a proposal [24] on how to overcome the
PNS attack.

The purpose of this Letter is to propose the decoy-
pulse method to overcome the PNS attack for BB84 pro-
tocol in the presence of high loss. This Letter is organized
as follows. First, we will briefly review how PNS attack
renders the BB 84 protocol with high loss insecure. Next
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to that of other signal pulses. Then we derive a condition
for security of the proposed protocol. Finally, we discuss
and conclude.

Let us briefly describe the PNS attack [19–23]. Unless
perfect single-photon sources are used, BB84 protocol
with loss is vulnerable to the following attack of Eve
(an eavesdropper). Let us assume that Alice (one legiti-
mate participant) uses the following photon sources in
BB84 protocol [2]: the emission of a pulse that contains a
single photon with, for example, 90% probability, and the
emission of a pulse that contains multiphotons with 10%
probability. The problem here is that multiphotons are
inadvertently generated and thus we do not know when
they have been emitted. Also assume that the channel loss
l is, for example, 90%, or it has 10% yield y. Here y �
1� l and y corresponds to pexp in Ref. [23]. Here we
assume that Bob (the other legitimate participant) uses
more practical detectors that are insensitive to photon
numbers. A more rigorous definition of the yield will be
given later. Eve’s attacking method is the followings.
First, Eve measures the number of photons of each pulse.
When it is one, she just blocks it. When it is more than
one, she splits the photons. (Our discussion here is valid
for general photon sources because ‘‘Alice can dephase
the states to create a mixture of Fock states’’ [22,23], as
described later.) Then she preserves one and sends the
other photons via an ideal lossless channel to Bob. As
usual, we assume that Eve has unlimited technological
and computational power. She is only limited by the laws
of Nature. Then what Bob observes is that only 10% of the
photon pulses arrive at him, as expected. However, Eve
can get full information about the key by measuring each
of the preserved photons in a proper basis that is publicly
announced later by Alice. We adopt the best-case assump-
tion for Eve as usual, that all multiphoton pulses were
used for the PNS attacks. Then we can see that if the yield
y is less than the probability pmulti of multiphoton gen-
erations then the scheme is totally insecure due to the
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that the scheme be secure [23],

y > pmulti: (1)

Here the probability pmulti of multiphoton generations is a
parameter for the quality of (imperfect) single-photon
sources. The smaller it is, the higher the quality is. For
a single-photon source with a given quality, the loss that
can be tolerated is determined by Eq. (1).

Therefore, when yield y is very low, an almost perfect
single-photon generator is required [22,23]. This fact
motivated current developments of single-photon sources
and the demonstration of QKD with them [25]. However,
the problem is that the sources cannot be perfect single
photons in practice [26]. In the case of surface-to-surface
free-space BB84 protocol, this condition seems to be
barely satisfied [16]. However, the loss in surface-to-
satellite scheme must be higher than that in the surface-
to-surface scheme, because in the former case one party is
moving fast and farther apart. Moreover, security of
surface-to-satellite protocol in which a satellite plays
the role of a legitimate user is based on physical security
of the satellite. That is, we must assume that Eve cannot
secretly observe inside of the satellite. However, it is not
easy to justify the assumption. Thus we propose to use the
(possibly geostationary) satellite with mirrors that con-
nect users on the surface. (The reflection protocol has
been proposed in the context of multiusers QKD [18].) In
this case, it is clear that the loss will be much higher. This
means that it is difficult to implement a secure scheme
with current technologies.

Thus we need methods to directly detect the PNS
attack. One possibility is to monitor photon-number sta-
tistics that might have been disturbed by Eve’s PNS
attack. This possibility has been studied in the case of
weak coherent states [21]; a simple minded PNS attack
disturbs the photon-number statistics of the pulses, thus it
can be detected by Bob. However, Eve can launch a so-
phisticated PNS attack that preserves the photon-number
statistics [21]. Thus we need another method against the
PNS attack.

The basic idea of the decoy-pulse method is the follow-
ing. In the PNS attack, Eve selectively transports subsets
of multiphotons to Bob. Thus the yield of multiphoton
pulses must be abnormally higher than that of single-
photon pulses. Let us assume that Alice intentionally
and randomly replaces photon pulses from signal sources
by multiphoton pulses (the decoy pulses). Since Eve can-
not distinguish multiphoton pulses of signal source from
those of decoy source, the yields of the two pulses must be
similar. Thus Alice and Bob can detect the PNS attack by
checking the yield of decoy source.

Before we give the decoy-pulse method, let us describe
preliminaries more precisely. Let us consider a source that
emits a pulse jni that contains n photons (in the same po-
larization state) with a probability pn. Here n�0;1;2; . . .
and

P
npn � 1. Each pulse is used to encode 1 bit of key.

Let us also consider a source that generates a coherent
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state j	ei�i [22–24]. By randomizing the phase �, the
state reduces to a mixed state  �

R
�d�=2��j	ei�i �

h	ei�j. However, this state is equivalent to the mixture
of Fock state

P
nPn�	�jnihnj, with Poissonian distribution

Pn�	� � e�		n=n!. In other words, the source that emits
pulses in coherent states j	ei�i is, after phase random-
ization, equivalent to a source that emits an n-photon
state jni with a probability Pn�	�.

Alice adopts two photon sources, that is, signal source
S and decoy source S0. The signal source is used to
distribute the key. The decoy source is used to detect
the PNS attack. Let us first consider the most practical
case where both sources are generators of coherent states.
For the signal source S, we adopt 	< 1, that is, it mostly
emits single-photon pulses. For the decoy source S0, we
adopt 	0 
 1, that is, it mostly emits multiphoton pulses.
The polarization of the pulses of the decoy source is
randomized such that it cannot be distinguished from
those of the signal source as long as photon numbers of
the pulses are the same.

We assume that Bob uses practical photon detectors that
are insensitive to photon numbers. The yield yn and y0n are
relative frequencies that n-photon pulses from the signal
and decoy sources are registered by Bob’s detector, re-
spectively. Here 0 � yn; y

0
n � 1. It is notable that the

yields can be unity even if some photons in a pulse are
lost. It is because Bob’s detector does not count the
number of ‘‘lost photons’’ in a pulse. The yield of signal
source Ys and that of the decoy source Yd are, respec-
tively, given by

Ys �
X
n

Pn�	�yn; Yd �
X
n

Pn�	0�y0n: (2)

Here Ys and Yd can be directly detected by Bob. We also
consider the yield of only multiphoton pulses from the
signal source, Ym

s , that is given by

Ym
s �

X1
n�2

Pn�	�yn: (3)

This quantity cannot be directly measured but it can be
bounded based on other yields. The normalized yield of
multiphoton pulses from signal source, ~YYm

s , is given by

~YY m
s �

X1
n�2

Pn�	�yn

�X1
n�2

Pn�	�: (4)

Now let us describe the protocol more precisely. In the
decoy-pulse method, Alice performs the BB84 protocol
with the signal source S. However, Alice randomly re-
places the signal source S by the decoy source S0 with a
probability �. After Bob announces that he has received
all photon pulses, Alice announces which pulses are from
the decoy source. By public discussion, they estimate the
total yield of signal source Ys and that of decoy source Yd.
If Yd is much larger than Ys, they abort the whole proto-
col. Otherwise, they continue the protocol by estimating
the yield of multiphoton pulses from the signal source,
057901-2
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Ym
s , using the yield of decoy source Yd in the follow-

ing way.
Eve cannot distinguish multiphoton pulses of a signal

source from those of a decoy source. Thus we can expect
that the normalized yield of multiphoton pulses from a
signal source is similar to that of a decoy source that
mainly is composed of multiphoton pulses. Let us discuss
it in more detail. First, we can see that the yields yn and y0n
cannot be different. That is,

yn � y0n: (5)

It is because, for a given pulse with a certain photon
number, Eve can get no more information about which
source the pulse is from, than what she obtains from
Bayes’s law. The only way for Eve to take advantage of
Bayes’s law is to control values of yn as she likes.

From Eqs. (2) and (5), it is easy to obtain
057901-3
X1
n�2

Pn�	
0�yn � Yd: (6)

Now the problem is how Ym
s �

P
1
n�2 Pn�	�yn is bounded

by Eq. (6). Eve’s goal is to make Ym
s as large as possible,

for a given yield of decoy source Yd. In other words, it is to
make the ratio A 

P
1
n�2 Pn�	�yn=

P
1
n�2 Pn�	

0�yn as
large as possible. Let us now note that, for 	<	0 as
we will choose,

Pn�	�

Pn�	0�
>

Pm�	�

Pm�	
0�
; if n <m: (7)

It is because Pn�	�=Pn�	
0� � �e�		n=n!�=

�e�	0
�	0�n=n!� � �e�	=e�	0

���	=	0�n�. We can see that
the ratio A is bounded as

A �

P
1
n�2 Pn�	�ynP
1
n�2 Pn�	0�yn

�
P2�	�

P2�	0�
: (8)

It is because
P2�	�=P2�	
0� � A �

�
1

��
P2�	

0�
X1
n�2

Pn�	
0�yn

���
P2�	�

X1
n�2

Pn�	
0�yn � P2�	

0�
X1
n�2

Pn�	�yn

�

�

�
1

��
P2�	0�

X1
n�2

Pn�	0�yn

��X1
n�2

ynfP2�	�Pn�	0� � P2�	0�Pn�	�g 
 0:
Here we have used Eq. (7) and yn; Pn 
 0. The equality is
achieved when y2 > 0 and yi � 0, where i � 3; 4; 5; . . . .

Thus this is Eve’s best choice. This can be interpreted as
follows. The larger the number of photons of a given pulse
is, the more probable it is that the pulse is from the decoy
source, by the Bayes’s law and the property of the
Poissonian distribution. Eve had better not make Bob’s
detector register when it is more probable that the pulse is
from the decoy source. Thus Eve’s optimal choice is to
block pulses containing more than two photons.

By Eqs. (3), (6), and (8), we can get

Ym
s �

P2�	�

P2�	
0�
Yd: (9)

The normalized one, ~YYm
s , is given by,

~YY m
s �

1

P2�	
0�

P2�	�P
1
n�2 Pn�	�

Yd: (10)

P2�	0� and P2�	�=
P

1
n�2 Pn�	� are of orders of unity in

reasonable regions of 	 and 	0, for example, 	 � 0:3 and
	0 � 1. Thus we get the expected result that ~YYm

s and Yd
have the same order of magnitudes.

The condition for security in Eq. (1) expresses the
following. In order that the protocol be secure, the total
number of pulses that are detected must be greater than
that of attacked ones. In the case of the decoy-pulse
method, the number of attacked pulses is
�
P

1
n�2 Pn�	�� ~YYm

s . Thus the condition reduces to

Ys > max

��X1
n�2

Pn�	�

�
~YYm
s

�
; (11)

where the maximum is taken over all strategies by
Eve. From Eqs. (10) and (11), we obtain a condition for
security

Ys >
P2�	�

P2�	
0�
Yd: (12)

Let us roughly estimate the quantities in our case where
both signal and decoy sources are generators of coherent
states with Poissonian statistics Pn�	� and Pn�	0� of
photon numbers n, respectively. In normal operations of
the protocol, that is, when Eve does not disturb the
communication, Yd will be larger than Ys by a factor of
	0=	. Then the condition reduces to

P2�	�

P2�	0�

	0

	
�

e	
0

	0

	
e	

< 1: (13)

For a given 	0, Eq. (13) is satisfied when 	 is small
enough, because 	=e	<	. For example, when 	�0:3
and 	0 �1:0 the left-hand side of Eq. (13) is around 0.604.

One might say that the mean photon number of signal
source, 	, should still be quite smaller than unity even
with the decoy-pulse method and thus there is no im-
provement over the usual protocols without the decoy-
pulse method. However, this is not the case: Eq. (13) does
not contain a term that amounts to channel loss, in con-
trast with the case of Eq. (1). Thus the condition for
security can be satisfied no matter how high the loss is
in the normal operations.

Our analysis above can be generalized to sources with
any probability distribution pn. For example, let us con-
sider an almost-perfect single-photon generator with a
particular photon-number distribution p1 � 1� � and
pi � k=i! where � � 1, k is a certain constant satisfying
057901-3
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P
1
i�2 pi � �, and i � 2; 3; . . . . Using the same decoy

source S0, the condition for security in this case is

Ys >
�

P2�	
0�
Yd: (14)

Equation (14) is satisfied by a large margin when � is
small enough. However, the key generation rate would be
proportional to the margin. Thus, the key generation rate
can be larger than that of the case where weak-coherent
states are used as the signal source.

In general, the more similar the forms the photon-
number statistics of the signal source and decoy source
have in a region of multiphotons, the more efficient the
decoy-pulse method is. Let us also consider the following
extreme case. Consider an almost-perfect single-photon
generator with a photon-number distribution, p1 � 1� �
and pN � �, where � � 1 and N is a number quite larger
than 2, for example, 10. In this case, Eve selectively
attacks the N photon pulses, making it more difficult to
satisfy the corresponding security condition, if we adopt
the same decoy source S0 with Poissonian distribution
P�	0�. Thus a general strategy in a design of a pair of
signal and decoy sources is to make the forms of the
photon-number statistics of the two sources as similar
as possible, in the region of multiphotons.

The proposed method is based on the basic idea of
random sampling. Thus we believe that the security of
the proposed protocol against the most general attacks
can be shown later, possibly extending methods devel-
oped in recent literature [27–29].

Conditions for the security of protocols with more
practical settings, e.g., nonzero dark count rate and mis-
alignment of basis, should also be analyzed later.

The only way to address certain imperfections so far is
to assume the best case for Eve [27–29]. For nonzero error
rates, for example, we assume that it is entirely due to
Eve’s attack. The decoy-pulse method, however, is an
example where we can relax this kind of assumption
without the loss of security in a proper way. It will be
worthwhile to look for similar ideas that can address
other imperfections.

In conclusion, we have proposed a decoy-pulse method
to overcome the photon-number-splitting attack for BB84
QKD protocol in the presence of high loss: A legitimate
user intentionally and randomly replaces signal pulses by
multiphoton pulses (decoy pulses). Then they check the
yield of the decoy pulses. If the yield of decoy pulses is
abnormally higher than that of other signal pulses, the
whole protocol is aborted. Otherwise, to continue the
protocol, they estimate the yield of signal multiphoton
pulses based on that of decoy pulses. This estimation can
be done with an assumption that the two losses have
similar values. We justified that assumption. We have
demonstrated that the estimation can be made indeed in
the practical case of coherent pulse sources. However, the
analysis can be generalized to an arbitrary case.
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