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Under a strong ac drive the zero-frequency linear response dissipative resistivity �d�j � 0� of a
homogeneous state is allowed to become negative. We show that such a state is absolutely unstable. The
only time-independent state of a system with a �d�j � 0�< 0 is characterized by a current which
almost everywhere has a magnitude j0 fixed by the condition that the nonlinear dissipative resistivity
�d�j

2
0� � 0. As a result, the dissipative component of the dc-electric field vanishes. The total current

may be varied by rearranging the current pattern appropriately with the dissipative component of the
dc-electric field remaining zero. This result, together with the calculation of Durst et al., indicating the
existence of regimes of applied ac microwave field and dc magnetic field where �d�j � 0�< 0, explains
the zero-resistance state observed by Mani et al. and Zudov et al..
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result is that a negative linear response conductance
implies that the zero-current state is intrinsically un-

�d�j � must revert to its dark (P ac � 0) value because
in this limit the microwave radiation will be a small
Recently, two experimental groups [1,2] reported
observations of a novel zero-resistance state in two-
dimensional electron systems subjected to a dc magnetic
field and to strong microwave radiation. When no micro-
wave power is applied, Refs. [1,2] observe a longitudinal
resistivity only weakly dependent on the magnetic field,
at least for the relatively small fields (filling factor
� > 10) applied in the experiment. However, when a
high level of microwave power was applied the resis-
tance developed a strong oscillatory dependence on the
applied magnetic field, with an oscillation period con-
trolled only by the ratio of the microwave frequency ! to
the cyclotron frequency !c. At low T and in certain field
ranges, the dissipative resistance was observed to vanish
within the experimental accuracy.

An important step towards the understanding of these
observations was taken in Ref. [3], which presented a
calculation of the effect of microwave radiation on the
dc linear response conductivity of a two-dimensional
electron gas. A crucial result of Ref. [3] (see also Ref. [4]
for earlier treatment and Ref. [5] for a detailed analysis) is
the existence of the regimes of magnetic field and applied
microwave power for which the longitudinal linear re-
sponse conductivity is negative,


xx < 0: (1)

However, in the literature so far a precise connection
between a negative linear response conductivity and the
experimental observations has not been presented.

In this Letter we show that Eq. (1) by itself suffices
to explain the zero-dc-resistance state observed in
Refs. [1,2], independent of the details of the microscopic
mechanism which gives rise to Eq. (1). The essence of our
0031-9007=03=91(5)=056803(4)$20.00 
stable: the system spontaneously develops a nonvanishing
local current density, which almost everywhere has a
specific magnitude j0 determined by the condition that
the component of the electric field parallel to the local
current vanishes. The existence of this instability is
shown, under reasonable assumptions, to imply the ob-
served zero-resistance state.

We consider dc transport in a two-dimensional electron
gas exposed to a static magnetic field and to an ac electric
field.We assume that the local dc-electric field E is related
to the local dc-current density j via

E � j�d�j2� � �j� z��H; (2)

where z is the unit vector normal to the plane of the
system. The crucial quantity in Eq. (2) is the longitudinal
(dissipative) resistivity �d�j2� whose dependence on the
current determines the physics we consider. The form of
�d�j2� is determined by parameters such as the applied
magnetic field Bapp and the frequency ! and power P ac of
the ac field, which we do not explicitly write. Also, to
simplify the discussion we do not consider nonlinear
effects in the Hall resistivity �H. This is not crucial for
the zero-resistance state; effects of including it in the
theory are discussed briefly at the end of the paper.

We assume that �d�j2� is a real, continuous function of
j2 and that (as found, e.g., in the calculations of Ref. [3]) a
range of Bapp, !, and P ac exists for which a spatially
homogeneous zero-current state is characterized by the
negative dissipative resistivity

�d�j2 � 0�< 0: (3)

However, at sufficiently large values of the dc current
2
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perturbation on the steady state electron distribution
function. Continuity implies that there is a value j � j0
at which

�d�j
2
0� � 0: (4)

We take �d�j
2� to have the form shown in the inset of

Fig. 1. The main panel of Fig. 1 shows the current-voltage
characteristic following from the assumed form of �d�j2�.
Such a dependence was obtained analytically in Ref. [5].

A negative dissipative resistivity is allowed under
nonequilibrium conditions, if the system is continu-
ously supplied with energy. In the situation considered
here energy conservation requires only that j2�d�j2� �
P ac > 0. However, a negative resistivity may render the
system unstable. Specifically, we now show that in a
system described by Eq. (3) with a resistivity curve as
shown in the inset in Fig. 1:

(i) A homogeneous, time-independent state character-
ized by a current j of magnitude less than the critical
value j0 defined in Eq. (4) is unstable with respect to
inhomogeneous current fluctuations.

(ii) The only possible time-independent state is one in
which the current j has magnitude j0 everywhere except
at isolated singular points (vortex cores) or lines (do-
main walls), implying vanishing dissipative electric field,
j �E � 0.

An immediate consequence of (ii) is that by adjusting
the details of the current pattern, any net dc current less
than a threshold value (which we discuss below) can be
sustained at vanishing dissipative electric field, so that
any microscopic mechanism of nonequilibrium drive re-
sulting in �d�j2 � 0�< 0 leads to the observed [1,2] zero
dissipative differential resistance:

dVx

dIdc
� 0: (5)
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FIG. 1. Assumed dependence of the dissipative (parallel to
current) component of the local electric field Ex on the current
density jx. Inset: dependence of the dissipative resistivity on the
square of the current.
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(Here Idc is a sufficiently weak applied current.) If too
large a current is imposed, the current structure will
collapse and a nonvanishing resistance will be observed.
We emphasize, however, that Eq. (5) is obtained on the
assumption that the system is in a steady state. Any
current pattern consistent with a boundary condition of
a small net current implies the existence of singularities
(domain walls or vortices) in the current distribution;
finite density of these objects may lead to a small dis-
sipative resistivity.

We pause to discuss the relation of our arguments to
previous literature. The instability of systems with abso-
lute negative conductivity is known since the work of
Zakharov [6]; for a recent review see [7]. The important
new feature of the instability and the domain structure of
the present paper is that it occurs at a large Hall angle; as
a result the domains for the current coincide with the
domains of the electric field directed perpendicularly to
the current. We would also like to point out a certain
similarity with the model of photoinduced polarization
domains proposed by D’yakonov [8] as an explanation of
experiments on ruby crystals under intense laser irradia-
tion [9].

We now present our specific arguments. We begin by
considering the fluctuations �j about a time-independent
homogeneous state of current ji. Taking the time deriva-
tive of Eq. (2) and using the continuity equation,

@n
@t

� r � j � 0; (6)

and the Poisson equation,

E � 	rÛUn; (7)

we obtain

r �ÛUr � j� �
@
@t

fj�d�j2� � �j� z��Hg: (8)

Here n is the electron charge density and ÛU is a nonlocal
interaction operator which can be expressed in terms of
the Green function of the Laplace equation with appro-
priate boundary conditions. The crucial point for us is
that ÛU has non-negative eigenvalues. (We assume that the
screening radius is equal to zero and neglect the differ-
ence between the electric and electrochemical potentials.
This approximation does not alter our main conclusions.)

Writing j�r; t� � ji � �j�r; t�, linearizing in �j, and
taking the divergence of both sides of Eq. (8), we find

@r � �j
@t

� �r�~�̂�d � �̂�H�
	1rÛU�r � �j; (9)

with �̂�H � �H�
0
	1

1
0� the usual Hall resistivity tensor,

~̂��̂��d � �d1� �jji � ji; (10)

and
056803-2
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FIG. 2. The simplest possible pattern of the current distribu-
tion— domain wall. The net current, I, is accommodated by a
shift of the position of the domain wall by the distance d; see
text. The electric field in the domain is E0 � �Hj0. The current
pattern in the Corbino disc geometry is obtained by connecting
the broken edges into a ring.

P H Y S I C A L R E V I E W L E T T E R S week ending
1 AUGUST 2003VOLUME 91, NUMBER 5
�j � 2
d�d�j2�
dj2

�������j2�j2i

: (11)

The Coulomb interaction operator ÛU is positive definite,
so the stability is determined by the sign of the operator
r�~�̂�d � �̂�H�

	1r in front of it. Performing a Fourier
transform of this operator we see that in order for any
solution of Eq. (9) not to grow with time the conditions

�d�j2� 
 0; (12a)

�d�j2� � �jj2 
 0; (12b)

must hold.
We therefore conclude that if at least one of �d or

�d � �j is negative, i.e., if ji < j0, a homogeneous state
of uniform current is unstable. However, we may also
show that any state with local current density larger
than j0 but net current density smaller than j0 is neces-
sarily time dependent. In this case the condition r � j � 0
requires the presence of circulating currents. The integral
J �

H
C dl �E along the current flow lines must vanish

because r�E � 0. On the other hand, from Eq. (2) and
r � j � 0, we find J �

H
C dl � j�d�j2�. By construction

of the contour dlj > 0. Therefore J � 0 can be satisfied
together with the stability condition (12a) only for
�d�j2� � 0, i.e., for j � j0.

Finally, we examine the stability of general states with
j ~jj�r�j � j0. In this case �d � 0 but � > 0; substitution
into Eq, (9) and use of Eq. (6) leads to

�
@
@t

� �r � �j0 � z����z� j0� � r�
�ÛU

�2
H

�
�n � 0; (13)

r � �j � 	@t�n. Operator ÛU is positive definite, while
the operator �r � �j0 � z����z� j0� � r� is Hermitian and
is non-negative because it can be presented as AAy.
Therefore, the state (4) is not unstable, except possibly
at singular points. The investigation of the stability of the
current pattern in the vicinity of the singular point re-
quires going beyond the local Eqs. (2) and (13) and will
not be done in the present paper.

Moreover, one can see from Eq. (13) that all the per-
turbations decay in time exponentially with the exception
of those for which �j0 � z� � rÛU�n � 0, i.e., with the
electric field directed along j0. The physical meaning
of these zero modes is all the perturbations of the current
which keep j2 � j20 and r � j � 0 (most trivial example
of such perturbation is a homogeneous rotation of vector
j0). These perturbations have zero eigenvalue and, analo-
gously to Goldstone modes, are a straightforward conse-
quence of the symmetry breaking induced by the applied
nonlinear drive.

We now consider the physical consequences of our
results. We found that a nonequilibrium system which
has a negative linear response resistivity is unstable to
the formation of a state of nonvanishing local current.
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Almost everywhere in the sample the current has the
magnitude j0 at which the dissipative resistivity vanishes,
but the direction must vary so that the net current is
consistent with boundary conditions. The current dis-
tribution must contain singular regions, of negligible
volume fraction, at which the current takes values differ-
ent from j0. The arguments relating to time-independent
states given above may be viewed as showing that it is
impossible to construct a time-independent singular-
ity structure for distributions involving currents of mag-
nitude greater than j0, whereas it is possible if in almost
all of the sample the current has magnitude j0. Just as
in the theory of superconductivity the detailed nature
and structure of the singular regions (domain walls,
vortex cores, or other structures) presumably de-
pends both on boundary conditions and on short length
scale physics. The question cannot be analyzed within
the quasicontinuum/local response function approach
used in this paper and is an important topic for future
investigation.

For concreteness of further discussion we will consider
the obvious choice of singularity shown in Fig. 2, namely,
a linear domain wall, separating two domains in which
current flows parallel and antiparallel to the domain
wall. We believe that a structure involving vortices would
lead to essentially identical physics. In the presence of
a magnetic field, consideration of the Hall component
of the current reveals the existence of a discontinuity in
the component of the electric field perpendicular to the
boundary. If n̂n is the vector perpendicular to the wall, and

j � 2j0 is the discontinuity in current across the wall
(assumed parallel to the wall direction), then the singu-
larity in the electric field is


E � 2n�Hj0: (14)

This discontinuity requires a charge accumulation which,
in a two-dimensional situation, is nonlocal (l0 is a cutoff
056803-3
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set by the microscopic structure of the domain)

n�r� ’ 	�Hj0 ln
�
jr � n̂nj
l0

�
: (15)

This charge distribution may be detectable by local
probes. The other possible way to detect dynamical sym-
metry breaking is to measure spontaneous voltages aris-
ing inside the domain, voltage V2 in Fig. 2.

Figure 2 presents a very natural (albeit probably over-
simplified) picture of the experimental situation studied
in Refs. [1,2]. In these experiments the current in one
direction (say, x) was fixed by current leads to some value
I, and the current in the transverse direction was set to
zero. The longitudinal (x) and transverse (y) voltages were
measured. Referring to Fig. 2, we see that any value of net
current I corresponding to a current density much less
than j0 can be obtained simply by adjusting the height of
the domain wall: if d is the position of the domain wall
relative to the center of the device, then I � 2dj0 with
Vx � 0. Similarly, the total Hall voltage is the sum of a
positive voltage in the upper half of the sample and a
negative voltage in the lower half, leading to Vy �
�H�j0�Ly=2	 d� 	 j0�Ly=2� d�� � 	�HI, which will
equal the dark (no microwave) result if �H is not much
affected by the ac field. Notice that for the Corbino disc
geometry the applied voltage (corresponding to Vy of
Fig. 2) can also be accommodated by the shift of the
domain wall without the generation of the dissipative
current, resulting in the zero-conductance state [10].

The equations analyzed in this paper predict threshold
behavior in I at low temperature T:Vx is strictly zero for
weak applied currents, but if the applied current is large
enough that the current density becomes of order j0 then
the domain wall is swept out of the system, and a dis-
sipative state corresponding to current densities greater
than j0 in some parts of the sample will result. Similarly,
our equations predict a critical temperature: at very high
temperature, the linear response conductivity will be
positive even at nonzero (but fixed) microwave power.
As T is lowered, 
xx will decrease and at some tempera-
ture pass through 0, upon which dissipationless behavior
will result. The sharp thresholds in I and T, which are in
apparent contradiction with Refs. [1,2], may be artifacts
of the simple treatment given here, which assumed a
static singularity structure and zero screening radius.

We did not consider the dependence of the Hall con-
ductivity on the applied current. It is easy to see that this
dependence does not change the condition (4) for the
circulating currents in the state because the Hall coeffi-
cient does not cause dissipation. Singular dependence of
j0 on the magnetic field will cause singular features in the
magnetic field dependence of the Hall resistivity near the
zero-resistance state. The shape and the value of these
singularities, however, have nothing to do with the quan-
tized plateaus in the quantum Hall effect.
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Finally, we note that we have assumed an isotropic �d.
In fact, the presence of an ac drive will lead to a quad-
rupolar anisotropy (see Ref. [5] for a microscopic deriva-
tion) which for the sake of notational clarity we did not
write but which can easily be included if desired. This
anisotropy will presumably affect the orientations of
domain walls, suggesting that it would be interesting to
look for differences in threshold behavior for the dc
current parallel or perpendicular to the ac current.

To summarize, we have shown that the remarkable
zero-resistance state found by Refs. [1,2] may be under-
stood on very general grounds as a consequence of a
negative linear response conductivity. Reference [3] has
presented a calculation, based on a specific microscopic
model, showing that this negative linear response con-
ductivity indeed may occur in the regime of magnetic
field and microwave frequency in which the zero-
resistance state occurs. Taken together, we believe the
present work and Ref. [3] capture the essence of the
experimental result.
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