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Quantum Interference in Carbon-Nanotube Electron Resonators
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A new mechanism is proposed to explain the slow conductance fluctuations in the conductance-gate
voltage plot observed in the nanotube electron resonators. It is found that the slow conductance
fluctuation is an intrinsic quantum interference phenomenon and exists in all metallic nanotube
resonators except zigzag ones. Analytical expressions for both slow and rapid oscillation periods of
the conductance fluctuations have been derived, which are well consistent with the existing experi-
ments. It is predicted that the ratio of the slow oscillation period to the rapid one is independent of the
gate-voltage efficiency, and determined only by the nanotube length used in experiments.
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FIG. 1 (color online). A theoretical model of an armchair
nanotube electron resonator. The atoms on a highlighted ring
construct an interface. (a) and (b) are schematic three-
dimensional and two-dimensional pictures, respectively. The
electron trajectories for an electron injected from a channel are
this Letter do not depend on details of the leads and illustrated in (c).
As electronic devices shrink to nanometer size, the
quantum interference between electron waves becomes
important [1–8]. The well-contacted single-walled car-
bon nanotubes (SWCNTs) [9–12] provide an example of
the devices using the quantum coherence [13–15], in
which the nanotube behaves as a coherent electron wave-
guide. Recently, it was reported that electron interference
in the perfect-contacted nanotubes manifests as conduc-
tance fluctuations vs Fermi energy with an oscilla-
tion period determined by nanotube length [13,14].
Observation of two units of quantum conductance 4e2=h
[14] indicates the ballistic motion of electrons in the
nanotubes [16]. The most interesting observation is that
the rapid conductance fluctuations are superimposed on
slow ones. Such a slow conductance fluctuation was at-
tributed to possible disorder effects in the nanotubes
[13,14]. In this Letter, we present a new mechanism to
show that the slow conductance fluctuation is an intrinsic
phenomenon in the nanotube electron resonators. It is
found that both the rapid and slow conductance fluctua-
tions are quantum interference phenomena. The latter
comes from nonlinear terms in the energy dispersion
relations of metallic nanotubes, while the former from
linear ones. Furthermore, we predict that the zigzag
nanotube resonators have no slow conductance fluctua-
tions, which are a unique exception in all metallic carbon
nanotube resonators because they have identical energy
dispersion relations for two propagating modes.

A Fabry-Perot electron resonator based on an armchair
nanotube is shown schematically in Fig. 1. The whole
model system consists of two semi-infinite leads (left
and right) and a central sample with a finite length,
which, as usual, for simplicity are assumed to be made
of the same kind of SWCNTs [17]. Each interface be-
tween a lead and the sample is simply represented by a
highlighted ring of atoms in Fig. 1, which may be re-
garded as a kind of defect. We introduce on-site energies
u1 and u2 to model the complicated barrier potential at
the interface. It will be seen that the results obtained in
0031-9007=03=91(5)=056802(4)$20.00 
barrier potentials used above. For an electron injected
from one channel in the left lead, its reflected and trans-
mitted wave propagation trajectories in the two leads and
the central sample are shown clearly in Fig. 1(c).

Armchair nanotubes (N;N) have a CN rotational sym-
metry so that there are N slices along the circumference
direction. A C-C bond in ringm and slice l can be labeled
by �m; l�. The armchair nanotube has two metallic bands
a1 and a2 (see Fig. 1 of Ref. [16]) crossing the Fermi level
at two Fermi points �kF � �2=3. For a given energy,
2003 The American Physical Society 056802-1
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FIG. 2. Zero-bias conductance vs gate voltage of an armchair
nanotube device with � � 0:01, u1 � 1:0 eV, u2 � 6:0 eV, and
M � 1624 rings of atoms. Inset, a plot in a narrower energy
region near Vg � 0.
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there are four degenerate states in the two bands with
wave vectors �k1 and �k2. Here k1 and k2 represent the
states on band a1 near kF and band a2 near �kF, respec-
tively. Under the tight-binding approximation, the wave
functions of the four degenerate states are given by

 �k1 �
1�����������
2MN

p
XM�1

m�0

XN�1

l�0

e�ik1m�jml; 1i 	 jml; 2i�;

 �k2 �
1�����������
2MN

p
XM�1

m�0

XN�1

l�0

e�ik2m�jml; 1i � jml; 2i�;

(1)

where M is the total number of rings in the nanotube,
jml; 1i (jml; 2i) denotes the jp?i orbital of the carbon
atom labeled 1 (2) in the C-C bond �m; l�.

At the zero-temperature and zero-bias limit, we set the
wave vectors of incoming and outgoing waves to be the
Fermi wave vector, i.e., k1 � �k2 � 2=3. The Fermi
energy in the nanotube waveguide can be changed by
the gate voltage Vg, which introduces a potential energy
��Vg to the waveguide with � the gate efficiency factor
[14]. Therefore, for an incident electron at the Fermi
level, its kinetic energy in the waveguide becomes �Vg.
From the energy dispersion relations in the armchair
nanotube, the wave vectors in the waveguide can be
determined by

��Vg � �1	 2 cosk1�j�j; �Vg � �1	 2 cosk2�j�j;

(2)

where � � �2:7 eV is the nearest-neighbor hopping am-
plitude [16]. With the help of Eq. (1), the boundary con-
ditions are constructed through the continuity equations
and the equations of motion [18] at sites on the boundary.
Then, it is straightforward to analytically derive the
transmission coefficients til;jr for a wave going from the
ith channel on the left electrode to the jth channel on
the right electrode [19]. From the analytical expressions
of til;jr, it follows that in the case of u1 � u2 the two
propagating modes are coupled, whereas, if u1 � u2, the
two modes are independent due to the symmetry of
barrier potential [20,21].

After til;jr is obtained, the conductance of the electron
resonator can be calculated based on the multichannel
Landauer-Büttiker formula [22–24]

G � �2e2=h�
X2
i;j�1

jtil;jrj
2: (3)

Figure 2 gives a plot of the conductance vs gate voltage
(G� Vg) for u1 � u2, in which u1 � 1:0 eV, u2 �
6:0 eV, and M is taken as 1624, corresponding to a nano-
tube length of about 200 nm. The parameter � is taken to
be 0.01, estimated from the capacitance of nanotube in
Ref. [13], i.e., CL � 20 electronsV�1 m�1. It is seen
that the rapid fluctuations are superimposed on a slow
fluctuation background. The rapid oscillating period is
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found to be about 0.9 eV, corresponding well to the ex-
perimental result [13]. Moreover, as shown in the inset of
Fig. 2, our calculated result reproduces the slow oscillat-
ing behavior in Fig. 1 of Ref. [13]. It is worthwhile
pointing out that, since the gate voltage Vg used in
Ref. [13] varies smaller, a full oscillating period of the
slow conductance fluctuation was not observed; while
with a larger variation of Vg, several slow oscillating
periods were observed in Ref. [14]. It should be pointed
out that, in order to reflect the significant contribution to
the conductance from the scatterings between different
modes, rather different values for u1 and u2 are taken in
our simplified model, in which only two parameters of u1
and u2 are taken to model the real complex barrier po-
tential. We should emphasize that, although the fine struc-
ture of the G vs Vg spectrum maybe changed by different
values of u1 and u2, the phenomenon of the rapid fluctua-
tions being superimposed on a slow fluctuation back-
ground does not depend on the values of u1 and u2.
More importantly, it is found that both of the rapid and
slow oscillation periods are independent of the choice of
the u1 and u2 values, which can also be seen clearly from
the later discussions.

In both Refs. [13] and [14], the slow conductance
fluctuations were argued to be induced by possible dis-
order in the nanotubes. However, in our model no disorder
is introduced, but the slow fluctuations are still obtained
in the armchair nanotube electron resonators. This indi-
cates that such a slow conductance fluctuation arises
mainly from intrinsic quantum interference effects in a
perfect nanotube rather than from external impurities or
defects. In order to make this point clear, we first analyze
the wave behavior in a resonator without mode coupling.
In this case (u1 � u2 � u), a wave injected from a chan-
nel must be transmitted to the same channel, forming a
series of transmitted partial waves, each of which differs
from the previous one by two extra reflections plus a
056802-2
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round-trip between the barriers. Near the Fermi level, the
simpler expressions of til;jr can be approximately obtained
as jt1l;1rj � j3=��u=�	

���
3

p
i�2 � �u=��2ei2k1Mj and

jt2l;2rj � j3=��u=�	
���
3

p
i�2 � �u=��2ei2k2Mj. Obvi-

ously, jt1l;1rj and jt2l;2rj have phase factors ei2k1M �

ei2�2=3	�k1�M and ei2k2M � ei2��2=3	�k2�M, respectively,
with �k1 � k1 � 2=3 and �k2 � k2 	 2=3, which can
be obtained by the energy dispersion relations. From
Eq. (2), we get

�Vg=j�j �
���
3

p
�k1 ��k21=2	 � � � ;

�Vg=j�j �
���
3

p
�k2 	�k22=2	 � � � :

(4)

In the first-order approximation, we have �k1 � �k2 �
�Vg= �hvF with vF �

���
3

p
j�j= �h, so that ei2k1M �

ei��2M= �hvF��Vg	4M=3 and ei2k2M � ei��2M= �hvF��Vg�4M=3.
Thus, with Vg increased, both jt1l;1rj and jt2l;2rj will
oscillate with a period of �Vrg �  �hvF=�M. But the
phase difference between jt1l;1rj and jt2l;2rj keeps con-
stant, making the total conductance fluctuate rapidly
without slow fluctuations. To the second order,

�k1 �
�Vg
�hvF

	

���
3

p

6

�
�Vg
�hvF

�
2
;

�k2 �
�Vg
�hvF

�

���
3

p

6

�
�Vg
�hvF

�
2
;

(5)

and we have

ei2k1M � ei�4M=3	2M��Vg= �hvF�	�
��
3

p
M=3���Vg= �hvF�2;

ei2k2M � ei��4M=3	2M��Vg= �hvF���
��
3

p
M=3���Vg= �hvF�2:

(6)

From Eq. (6), it follows that the phase difference between
jt1l;1rj and jt2l;2rj varies with Vg, producing a slow fluc-
tuation in G. Its oscillation period is approximately given
by �Vsg � � �hvF=���2

���
3

p
=M�1=2�

���
n

p
�

������������
n� 1

p
�, where n

is the number of the slow oscillating period labeled from
Vg � 0. Next, we consider the case with mode coupling,
which may complicate the wave behavior. For example, a
wave injected from a channel can be transmitted to both
channels. However, it is not difficult to show that in this
case, jtil;jrj contains terms ei2k1M, ei2k2M, and ei2�k1	k2�M.
For the same reason mentioned above, the total conduc-
tance has only rapid fluctuations if only linear terms in
�k1 and �k2 are taken into account, while it has the rapid
oscillations superimposed on the slow ones if the non-
linear terms in �k1 and �k2 are included (see Fig. 2). The
rapid and slow fluctuation periods are the same as those in
the case of no mode coupling. From the analyses above, it
follows that existence of slow fluctuations inG� Vg plots
is an intrinsic phenomenon of the armchair nanotube
electron resonator. It is induced by the nonlinear terms
in the energy dispersion relations, which causes the dis-
persion relations for band a1 near kF � 2=3 to differ
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from those for band a2 near �kF. It is interesting to find
that, although both the slow and rapid oscillation periods
depend on �, their ratio, �2

���
3

p
M=�1=2�

���
n

p
�

������������
n� 1

p
�, is

independent of �. It means that, for any two experiments
with different gate efficiencies but the same tube length,
there will be the same number of rapid oscillation periods
within a slow oscillation period.

We have also studied the quantum interference in the
electron resonators made of metallic zigzag nanotubes. It
is found that the conductance has only rapid fluctuations
with gate voltage, but, NO slow fluctuation. While at first
glance it is surprising, this absence of slow fluctuations
could be understood by the following argument. There are
two completely coincided metallic bands in the zigzag
nanotubes. Since the two modes have the same disper-
sion relations, electrons in a round-trip between two
barriers will acquire the same phase shifts in the two
modes. Therefore, the coefficients jtil;jrj contain only
phase factor ei2kM with k being determined from the
dispersion relations,

��Vg � 2j�j sin�k=2�: (7)

As a direct result, there is no slow fluctuation.
The calculations made above are easily extended to

arbitrary metallic nanotubes. For the same reasons dis-
cussed in armchair nanotube resonators, the nonlinear
terms in the energy dispersion relations lead to slow
conductance fluctuations. To the second order approxi-
mation, the slow fluctuation periods are approximately
given by

�Vsg � � �hvF=���2~rr=M sin�3"�1=2�
���
n

p
�

������������
n� 1

p
�: (8)

Here ~rr �
���������������������������������
n21 	 n22 	 n1n2

q
=N is the effective perimeter

of metallic nanotube �n1; n2� with N the largest common
divisor of n1 and n2, " is the chiral angle of the nanotube,
and M is the total C-C bond rings along the helical
direction [25]. Equation (8) is a general result suitable
for arbitrary metallic nanotubes. For n1 � n2 � N and
" � =6, it reduces to the result of the armchair nano-
tube. The zigzag nanotube just corresponds to the case
of " � 0.

In summary, we propose a new mechanism to explain
the slow conductance fluctuations in the conductance-
gate voltage plot observed in the nanotube electron
resonators. It has been demonstrated that the slow con-
ductance fluctuations are an intrinsic quantum interfer-
ence phenomenon and exist in all metallic nanotube
resonators except zigzag ones. We have analytically de-
rived formulas for both the slow and the rapid oscillation
periods of the conductance fluctuation, which are well
consistent with the experimental observations. It is pre-
dicted that the ratio between the slow and the rapid
oscillation periods is independent of the gate-voltage
056802-3
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efficiency, and determined only by the nanotube length
used in the experiment.
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