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Effects of Spin and Exchange Interaction on the Coulomb-Blockade Peak Statistics
in Quantum Dots
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We derive a closed expression for the linear conductance through a quantum dot in the Coulomb-
blockade regime in the presence of a constant exchange interaction. With this expression we calculate
the temperature dependence of the conductance peak-height and peak-spacing statistics in chaotic
quantum dots. Using a realistic value of the exchange interaction, we find significantly better agreement
with experimental data as compared with the statistics obtained in the absence of exchange.
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temperatures. We also explain the discrepancies between
�

electron in orbital � to decay to the left or right lead. The
The conductance through a quantum dot that is weakly
coupled to leads displays sharp peaks as an applied gate
voltage is varied. Each conductance peak describes the
addition of one more electron into the dot. The statistics of
both the peak heights and peak spacings in dots whose
single-electron dynamics is chaotic have been intensively
studied in recent years [1]. In such dots the fluctuations
of the single-particle levels and wave functions are de-
scribed by random-matrix theory (RMT) [2]. Some of the
experimental observations, e.g., the peak-height distribu-
tions at low temperature [3,4], have been explained at
least qualitatively by the constant-interaction (CI) model,
in which the interaction is represented in the simple form
of an electrostatic charging energy. Other observables,
such as the peak-spacing distribution [5], have indicated
that residual interactions beyond charging energy should
be taken into account [6,7].

Recently, a universal Hamiltonian was derived [8,9] for
a dot with a large Thouless conductance gT �

����
N

p
(N is

the number of electrons). An important contribution to
this Hamiltonian is a constant exchange interaction. The
remaining interaction terms are suppressed at large gT.
Effects of the exchange interaction at finite temperature
(and finite-gT corrections) have explained features of the
peak-spacing distribution [10,11], but these studies were
limited to low temperatures.

Here we study the effects of the exchange interaction
and spin on the finite-temperature statistics of both the
peak heights and peak spacings over the full measured
temperature range. To this end, we derive a closed formula
for the conductance in the presence of a constant ex-
change interaction, expressing the conductance in terms
of quantities that characterize spinless noninteracting
electrons. We then calculate the finite-temperature peak-
height and peak-spacing statistics and find that they are
both sensitive to the exchange interaction. Using an RPA
estimate of the exchange interaction for the samples
studied in Refs. [5,12], we obtain very good agreement
with the observed temperature dependence of the stan-
dard deviation of the peak spacing for all measured
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the experimental peak-height statistics [12] and the pre-
dictions of the CI model for kT & 0:6� (� is the mean
spacing between spin-degenerate levels).

The universal Hamiltonian of a quantum dot in the
limit gT ! 1 is given by [8,9]

ĤH �
X
��

	�a
y
��a�� �

e2

2C
n̂n2 � JsŜS

2; (1)

where 	� are spin-degenerate single-particle levels (� �
	1 labels the spin). The second term in Eq. (1), where C is
the dot’s capacitance and n̂n is the particle-number opera-
tor, is the electrostatic energy of the dot. The third term,
in which ŜS is the total-spin operator, is a constant ex-
change interaction with strength Js. The occupation-
number operator n̂n� � n̂n�� � n̂n�� of any single-particle
orbital � commutes with the total spin, 
n̂n�; ŜS� � 0, and
the Hamiltonian ĤH is invariant under spin rotations. Thus
the eigenstates of ĤH are characterized by their particle
number N, the orbital occupation numbers n � fn�g
(n� � 0; 1, or 2), the total spin S, and its projection Sz �
M. We label the eigenstates as jNn�SMi where � distin-
guishes between states with the same total spin S and
particle configuration n. The eigenenergies are given by
"�N�nS �

P
�	�n� � e2N2=2C� JsS�S� 1�.

When a typical tunneling width is small compared
with kT and �, the conductance can be calculated using
a rate-equations approach. Reference [13] describes such
an approach in the presence of interactions and spin. In
particular, an explicit solution exists in the special case
when n� are good quantum numbers. Expressing the
conductance G in a rescaled form g � G=�e2 �		=8 �hkT�
( �		 is an average width of a level), we have, in the vicinity
of the N � 1st Coulomb-blockade peak [10,13]

g � 4
X
�n�S
n0�0S0

~PP�N�
nS f�"

�
S0S�j�
N � 1�n0�0S0jjay�jjNn�S�j

2g�:

(2)

Here g� � 2 �		�1	l
�	

r
�=�	

l
� � 	r

�� are the single-particle
level conductances, where 	l;r are the partial widths of an
2003 The American Physical Society 056801-1



P H Y S I C A L R E V I E W L E T T E R S week ending
1 AUGUST 2003VOLUME 91, NUMBER 5
equilibrium probability of the dot to be in the state
jNn�SMi is ~PP�N�

nS � e��
"
�N�
nS �~		FN�=Z, where the partition

function Z is a Boltzmann-weighted sum over all possible
N- and �N � 1�-body states, and ~		F � e�Vg � 	F is an
effective Fermi energy (	F is the Fermi energy in the
leads, Vg is the gate voltage, and � � Cg=C with Cg the
dot-gate capacitance). The Fermi-Dirac function f�x� �
�1� e�x��1 is evaluated at an electron energy "�S0S �
"�N�1�
n0S0 � "�N�nS � ~		F that conserves energy at the transition

between states jNn�SMi and j�N � 1�n0�0S0M0i. The
reduced matrix element �
N � 1�n0�0S0jjay�jjNn�S� en-
forces the selection rule S0 � jS	 1=2j.

Equation (2) requires a summation over the dot’s many-
body eigenstates, whose number increases combinatori-
ally with the number of single-particle levels. The equa-
tion thus becomes impractical at higher temperatures.
Here we derive a novel formula for the conductance
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that is expressed solely in terms of a sum over single-
particle levels (and the allowed spin values) and greatly
facilitates the calculation of the conductance at higher
temperatures. We begin by rewriting Eq. (2) in the form

g �
X
�


w�0�
� � w�1�

� �g�; (3)

where the contributions with n� � 0 and n� � 1 are
collected in w�0�

� and w�1�
� , respectively. For the cases

with n� � 0, the final �N � 1�-particle state is given by
j�N � 1�n0�0S0M0i �

P
M��SM

1
2�jS

0M0�ay��jNn�SMi,
where �SM 1

2�jS
0M0� is a Clebsch-Gordan coefficient.

When n� � 1 (and hence n0� � 2), the N-particle state
can be similarly related to the �N � 1�-particle state by
changing to a hole representation. This leads to
�
N � 1�n0�0S0jjay�jjNn�S� � ���S�S
0�1=2

� ����������������
2S0 � 1

p
if n� � 0;���������������

2S� 1
p

if n0� � 2:
(4)

Using the relation ~PP�N�
nS f�	

�
S0S� �

~PP�N�1�
n0S0 
1� f�	�S0S��, we obtain

w�0�
� � 4

X
S

b�;N;SPN;S
X

S0�S	1=2

�2S0 � 1�f�	�S0S� ; (5a)

w�1�
� � 4

X
S0
c�;N�1;S0PN�1;S0

X
S�S0	1=2

�2S� 1�
1� f�	�S0S�� ; (5b)

1
where the quantities b�;N;S � 2 h�n̂n� � 1��n̂n� � 2�iN;S
and c�;N;S �

1
2 hn̂n��n̂n� � 1�iN;S ensure that the sum is

only over contributions with n� � 0 or 1, respectively.
They are defined as thermal expectation values at con-
stant particle number N and spin S, i.e., hX̂XiN;S �
TrN;S
X̂Xe��ĤH�=TrN;S
e��ĤH�. The quantity PN;S is the
probability to find the dot with N electrons and spin S,

PN;S � e��
FN;S�UN;S�=Z; (6)

where FN;S � ���1 lnTrN;Se
��

P
��
	�a

y
��a�� is the free en-

ergy of N noninteracting electrons with total spin S and
UN;S � e2N2=2C� JsS�S� 1� � ~		FN.

The spin-projected trace of a scalar observable can be
calculated from traces at fixed spin projection M using
TrN;SX̂X � TrN;M�SX̂X� TrN;M�S�1X̂X. For spin-1=2 par-
ticles, the projection on fixed particle number N
and spin projection M is equivalent to projecting on
a fixed number of spin-up and spin-down particles
n	 � N=2	M. Therefore, TrN;SX̂X � trN=2�S;N=2�SX̂X�
trN=2�S�1;N=2��S�1�X̂X, where the traces ‘‘tr’’ on the right-
hand side are evaluated at fixed n� and n�. Using X̂X �
e��

P
��
	�a

y
��a�� , we find that the free energy in Eq. (6) is

given by

e��FN;S � e��
 ~FFN=2�S� ~FFN=2�S� � e��
 ~FFN=2�S�1� ~FFN=2��S�1��: (7)

The free energy ~FFq in Eq. (7) is defined for q spinless

fermions e�� ~FFq � trqe
��

P
�
	�c

y
�c� , where cy� create spin-

less fermions in nondegenerate levels 	�. The quantity
c�;N;S from Eq. (5b) can now be expressed as
c�;N;S �
h~nn�iN=2�Sh~nn�iN=2�Se��


~FFN=2�S� ~FFN=2�S� � h~nn�iN=2�S�1h~nn�iN=2��S�1�e��

~FFN=2�S�1� ~FFN=2��S�1��

e��
 ~FFN=2�S� ~FFN=2�S� � e��
 ~FFN=2�S�1� ~FFN=2��S�1��
; (8)
where ~nn� is the particle-number operator of a nondegen-
erate orbital �. The function b�;N;S from Eq. (5a) is ex-
pressed by replacing ~nn� by �1� ~nn�� in Eq. (8). The
complete expression for the conductance is then obtained
from Eqs. (3) and (5)–(8) and the relation indicated in the
previous sentence. Thus the dot’s conductance in model
(1) is determined in terms of the free energy ~FFq and
occupation numbers h~nn�iq of q noninteracting spinless
fermions, quantities that are familiar from the CI model
[14] and can be expressed in closed form using particle-
number projection [see Eqs. (140) in Ref. [1] ].

In chaotic dots, the single-particle Hamiltonian in (1)
is described by RMT [2]. We have studied the statistics of
peak heights and spacings for both the orthogonal and
unitary symmetries using a rather large space of 50
single-particle orbitals �. We verified that our results
are not affected by the finite size of the system up to
056801-2
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temperatures of kT � 3�. The results shown below (ex-
cept in Fig. 4) are for the unitary statistics (i.e., in the
presence of a nonzero perpendicular magnetic field).

Theoretical calculations of the width ���2� of the
peak-spacing distribution, based on a spinless CI model
[15], describe qualitatively the observed decrease of this
quantity with increasing temperature [5]. However, when
spin is included and in the absence of exchange, the
calculated values of ���2� (long-dashed line in Fig. 1)
show a large discrepancy with the experimental values
(symbols). Figure 1 also shows ���2� for nonzero values
of Js. For a gas constant of rs � 1:2 (which corresponds to
the samples used in the experiments), the RPA estimate is
Js � 0:3� [16], and we find for this value a very good
agreement with the measurements. The results for Js �
0:5� (a limiting RPAvalue for large rs) underestimate the
experimental widths. We remark that at temperatures
kT & 0:4�, model (1) does not describe well the shape
of the peak-spacing distribution, and it is necessary to
include the fluctuating part of the interaction to explain
the absence of bimodality [7,10,11]. At higher tempera-
tures, thebimodality is absent already in model (1) and the
residual interaction has a negligible effect on the width.

Next, we discuss the peak-height statistics [17]. An
important measured quantity is the ratio between the
standard deviation ��gmax� and the average �ggmax of the
peak heights gmax [12]. The experimental data for this
ratio (symbols in Fig. 2) are suppressed in comparison
with the results of model (1) without an exchange term
(long-dashed line in the left panel of Fig. 2). Spin-orbit
interaction has been proposed as a mechanism for this
suppression [18]. It was necessary to assume a spin-orbit
coupling that is sufficiently strong to decorrelate the spin-
up and spin-down levels. However, spin-orbit effects are
likely to be suppressed in small dots [19]. To determine
whether an exchange interaction can explain the observed
FIG. 1. The width ���2� of the peak-spacing distribution
(unitary symmetry) for different values of the exchange inter-
action Js. The symbols are the experimental data of Ref. [5].
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suppression of ��gmax�= �ggmax, we calculated this ratio
versus kT for different strengths of Js (see Fig. 2). In
the elastic limit (left panel), a realistic exchange inter-
action of Js � 0:3� (solid line) leads to closer agreement
with the data. The remaining small discrepancy at kT &

0:6� can probably be accounted for by adding a realistic
weak spin-orbit interaction. The discrepancy at higher
temperatures, where inelastic scattering may play a role,
remains to be explained. The suppression of ��gmax�= �ggmax

due to inelastic scattering was shown to be small for Js �
0 [20]. In the right panel of Fig. 2 we show results for the
rapid-thermalization limit of strong inelastic scattering
in the presence of an exchange interaction. These calcu-
lations do not describe the high-temperature data, and it
would be interesting to determine the effect of an addi-
tional weak spin-orbit term.

For kT � � and Js � 0, the peak-height distribution
P�gmax� is known analytically [3] and is shown for the
unitary symmetry in the left panel of Fig. 3 (solid line).
Also shown (histogram) is the peak-height distribution
calculated at kT � 0:01� and Js � 0:5�. No significant
effect due to exchange is observed except for a small
enhancement of the probability at small peak heights.

At finite temperature, the exchange interaction has a
stronger effect on the peak-height distribution. The right
panel of Fig. 3 compares the histogram (shaded) of the
experimental data for P�gmax= �ggmax� at kT � 0:1� with
the calculated histograms for the cases of no exchange
(Js � 0) and Js � 0:3�. This latter realistic value of the
exchange interaction explains the observed suppression of
the probability at small peak heights.

The weak-localization effect in the average peak
height has recently attracted attention both in experiment
FIG. 2. The ratio ��gmax�= �ggmax between the standard devia-
tion and the average value of the peak height versus tempera-
ture kT for the unitary statistics. The left (right) panel shows
the elastic (rapid-thermalization) limit for Js � 0 (long-
dashed), 0:3� (solid), and 0:5� (short-dashed). The symbols
are the experimental data of Ref. [12].
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FIG. 3. Peak-height distributions (unitary symmetry). Left
panel: The distribution P�gmax� at kT � � and Js � 0 (smooth
line) is compared with the corresponding distribution at kT �
0:01� and Js � 0:5� (histogram). Right panel: Experimental
data from Ref. [12] (shaded histogram) at kT � 0:1� are
compared with the calculated distributions at Js � 0 (dashed
histogram) and Js � 0:3� (solid histogram).
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and theory [20–23]. Its suppression at higher tempera-
tures was suggested as a signature of inelastic scattering
[22]. The effect is quantified by the parameter ( � 1�
� �ggGOEmax = �ggGUEmax �. In the rapid-thermalization limit, ( de-
creases rapidly with increasing temperature from its
value of 0:25 at kT � �. In contrast, if inelastic scatter-
ing is negligible, ( was expected to be temperature
independent. However, calculations for Js � 0 showed a
slight suppression of the elastic ( around kT � 0:25�
[20,23]. This was understood by the fact that close-lying
levels and hence higher conductances are more likely for
the orthogonal symmetry. The effect of the exchange
interaction on ( is shown in Fig. 4. We find that the dip
FIG. 4. The weak-localization parameter ( versus tempera-
ture kT in the elastic and rapid-thermalization limits for three
different values of the exchange-interaction strength Js.
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in ( around kT � 0:25� is flattened out and in the small-
temperature limit ( becomes larger than 0:25 [10].
However, the experimental errors of Ref. [21] are too
large to observe this effect. In the rapid-thermalization
limit, ( is rather insensitive to Js (see Fig. 4).

In conclusion, we have derived a closed expression for
the conductance in the presence of spin and exchange
interaction. Using this formula we studied the dependence
of both the peak-height and peak-spacing statistics on the
exchange interaction and found a significantly better
quantitative agreement with experiment as compared
with calculations in the absence of exchange.
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