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Curvature-Dependent Surface Tension of a Growing Droplet
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A ghost interface simulation technique is developed and applied to supersaturated Lennard-Jones
liquid-vapor interfaces. It is shown that the surface tension decreases approximately linearly with the
supersaturation ratio and that it vanishes at the spinodal. The effect leads to a curvature-dependent
surface tension since, it is argued, the local supersaturation of the vapor above a droplet is greater than
in the bulk due to slow diffusion in the vapor phase. An analytic approximation is given for the local
supersaturation ratio, and an analytic expression for this contribution to Tolman’s length is derived. The
theory gives a smaller critical radius and reduces the free energy barrier to nucleation compared to
classical homogeneous nucleation theory, which have important implications for the kinetics of droplet
and bubble formation.
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face tension [12] or the barrier to liquid droplet formation which mechanical equilibrium is manifest in the
The growth of liquid droplets from a supersaturated
vapor is described by homogeneous nucleation theory,
which expresses the free energy of formation as the sum
of two terms: the surface tension times the interfacial
area, which opposes growth and dominates at small radii,
and a term proportional to the droplet volume that arises
from the decrease in free energy as gas molecules con-
dense on the liquid drop [1,2]. The theory is very general
and also applies to the nucleation of gas bubbles from a
superheated liquid, the precipitation of crystals from a
supersaturated solution, and the phase separation of a bi-
nary mixture, as examples. A major concern of the theory
is the height of the free energy barrier to droplet forma-
tion, and the critical radius at which this barrier is lo-
cated. These determine the rate at which droplets form as
a function of the degree of supersaturation.

A crucial input is the interfacial tension, and this is
usually taken as that of the planar liquid-vapor interface
at coexistence. In principle, the surface tension depends
upon curvature, but in practice these corrections are diffi-
cult to quantify. Tolman’s length [2– 4] is less than a mo-
lecular diameter in size [5–9] and is usually calculated
from an approximate expression for the surface tension
that is valid only to first order in curvature. There is no
consensus on the form of the so-called replacement free
energy, which is meant to account for losses of molecular
degrees of freedom and edge effects [2]. Similarly con-
troversial is the effect of the loss of macroscopic motion
of the droplet, although this appears to be small [10,11].

Here a novel curvature effect is proposed that is distinct
from the essentially geometrical contributions to
Tolman’s length that have previously been explored. It is
based upon the effect of supersaturation on surface ten-
sion. A simulation technique is developed that gives for-
mally exactly the surface tension of a planar interface and
it is shown that the surface tension decreases with in-
creasing supersaturation. This is consistent with earlier
density functional work that showed that either the sur-
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[13] vanished approaching the spinodal line. The idea is
particularly significant in view of the Laplace equation,
which says that the vapor pressure above a droplet in-
creases in inverse proportion to the droplet radius. A
growing droplet is in a nonequilibrium state, and due to
slow diffusion in the gas phase, one expects that the state
of the vapor proximal to the droplet will be determined
by the Laplace equation and will differ from the global
supersaturation of the bulk vapor far from the droplet,
(i.e., diffusion across the interface is much faster than
diffusion from the droplet to the gas reservoir). The facts
that the planar surface tension decreases with increasing
supersaturation and that the local supersaturation above a
droplet increases with increasing curvature lead to a novel
curvature dependence in the surface tension. This pro-
posal provides a physical interpretation of the observed
decrease in surface tension with decreasing droplet radius
[5–8], and it provides the basis for an analytic treatment
of the problem.

Three expressions are required: the free energy of the
growing droplet, the local supersaturation of the gas
phase above the droplet, and the surface tension as a func-
tion of supersaturation. The capillarity approximation
gives the constrained Helmholtz free energy of a single
growing droplet as the sum of surface and bulk terms

F�Nl; RjN;V; T� � �A� F�Nl; Vl; T� � F�Ng; Vg; T�;

(1)

where the subscripts refer to the liquid and gas phases, N
is number, V is volume, A is area, R is radius, T is
temperature, and � is the surface tension, which is con-
ventionally taken to be the planar coexistence value.
The notation indicates that Nl and R are constrained
variables for the nonequilibrium thermodynamic poten-
tial [14]. The extremum of the constrained free energy is a
saddle point (for an infinite system [11]). It is a minimum
with respect to variations in radius at fixed number,
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Laplace equation,

pl � pg �
2�

R
; (2)

where p is the pressure. The derivative with respect to
number vanishes when there is chemical potential equal-
ity, �l � �g.

Classical nucleation theory proceeds by assuming that
the liquid is incompressible, �l � �y � �pl � py�=�l,
where the superscript denotes the equilibrium state, and
that the gas is ideal and forms a reservoir [1,2,8,11],

F�RjS; T� � �A� �lVlkBT lnS� �S� 1	pyVl; (3)

where the bulk supersaturation ratio is S 
 pg=p
y, and kB

is Boltzmann’s constant. The approximations involved
here have been shown to be relatively accurate [11], with
the exception of the assumption that the surface tension
has its coexistence value, as shown below.

The growing droplet is in a nonequilibrium state char-
acterized by the given variables. The present theory de-
parts from the classical by recognizing that the gas phase
is also in a nonequilibrium state, with the vapor pressure
immediately above the surface of the droplet being de-
termined by the fast diffusion across the interface rather
than the slower diffusion into the bulk gas reservoir.
Hence one has a local supersaturation ratio, Slocal 

plocal
g =py, and the stationary condition is �l � �local

g ,
which, with the ideal gas and incompressible liquid as-
sumption, gives

pl � py � kBT�l lnS
local: (4)

Assuming mechanical equilibrium, inserting this into
the Laplace equation generalizes the Kelvin equation,

Slocal � 1� 2��Slocal�=Rpy � �kBT�l=py	 lnSlocal � 0;

(5)

where an expression for the surface tension as a function
of supersaturation will be given shortly. This is an explicit
equation for droplet radius as a function of local super-
saturation ratio. Replacing � by ��R� 
 ��Slocal�R�� in
Eq. (3) gives the thermodynamic potential of a droplet
constrained to have radius R taking into account the
dependence of the surface tension on the local atmosphere
above the droplet. Note that it is S, not Slocal, that appear
in the remaining terms in Eq. (3) as these represent the
transfer of gas from the reservoir to the droplet.

In place of the capillarity approximation of Eq. (1), the
formally exact expression for the supersaturated surface
tension is [11]

�A � F�Nl; VljN;V; T� � Vlf��
z
l ; T� � Vgf��

z
g ; T�: (6)

Here appear bulk Helmholtz free energy densities of the
metastable states at a given chemical potential �z.
Moody and Attard have recently shown that this may be
rearranged to give the surface tension in a form suitable
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for computer simulation [11,15,16],

e��A=kBT �
he�U12=kBTi0lg���������������������������������������������������

he�U12=kBTi0llhe
�U12=kBTi0gg

q : (7)

The averages on the right-hand side are for the interaction
potential U12 across the planar interface between two
uncoupled phases (ghost interface) of the three types
indicated by the subscripts. This result is the analog of
Widom’s expression for the chemical potential.

Briefly, the simulation protocol consisted of a prelimi-
nary Gibbs ensemble simulation of coupled liquid and
vapor rectangular cells to determine the number of atoms
at coexistence in each. These were then fixed for the
subsequent three ghost interface simulations, which
each involved two uncoupled or partially coupled simu-
lation cells. The averages required above were obtained by
multistage sampling (four to eight stages), with a non-
linear partial coupling of the Lennard-Jones interaction
potential. Tail corrections for the truncation of the poten-
tial were invoked, and the results were insensitive to
system size, the largest of which was 6� 6� 20� with
up to 600 atoms. After equilibration of each stage, the
averages were collected over 4000 cycles. The two simu-
lations for the averages involving the vapor phase were
repeated for each value of supersaturation, which was
studied by increasing the number of atoms in the vapor
phase. (The number of liquid atoms was fixed at the
coexistence value, which is justified because the liquid
is incompressible, and it was shown that the procedure is
insensitive to the choice of atom number.) Full details of
the simulations will be given in another place [15].

In Fig. 1 it can be seen that the new simulation proce-
dure yields a surface tension at coexistence in agreement
with that obtained by the conventional Kirkwood-Buff
theory. A unique feature of the ghost interface equation is
that it can be used to obtain the surface tension of a
supersaturated interface, which cannot be done with the
Kirkwood-Buff theory. Figure 1 shows that the surface
tension decreases with increasing supersaturation of the
vapor phase, and that it vanishes approaching the spino-
dal, which is intuitively appealing and consistent with
earlier density functional results [12,13]. To a good ap-
proximation the decrease is linear and well fitted by

��S� � �y S
0 � S

S0 � 1
; (8)

where �y is the planar coexistence surface tension and
S0 > 1 is the supersaturation ratio at the spinodal (S � 1
corresponds to coexistence). The spinodal supersaturation
ratios used for the fit, S0 � 2:7, 5.0, and 6.5, agree with
those obtained from the Lennard-Jones equation of state
[17], S0 � 2:2, 6.3, and 14.8, respectively. The discrep-
ancy is likely due to the limited validity of the equation of
state in the spinodal regime.
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FIG. 1. Monte Carlo ghost interface simulations of the planar
surface tension of a Lennard-Jones fluid (� is the well depth and
� is the diameter), as a function of the supersaturation ratio of
the vapor phase. The triangles, squares, and circles represent
T � 0:7�=kB, 0:8�=kB, and 1:0�=kB, respectively. The open
symbols represent the coexistence surface tension �y simulated
using the standard Kirkwood-Buff approach [9] (obscured for
T � 0:7�=kB), and the straight lines are fits using Eq. (8), with
S0 � 2:7, 5, and 6.5, and �y � 0:43�=�2, 0:89�=�2, and
1:15�=�2, from highest to lowest temperature, respectively.
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Using the fitted Eq. (8), the local supersaturation ratio
has been calculated as a function of droplet radius, Eq. (5),
and the surface tension of the droplet is displayed in
Fig. 2. As can be seen there is a significant decrease in
the surface tension for small droplets due to the high local
supersaturation, and one can anticipate that the barrier to
nucleation will be greatly reduced by the effect.

Conventional molecular dynamics simulations for a
droplet contain inseparably the geometric and thermody-
namic curvature effects. It can be seen in Fig. 2 that
conventional results [7] are nevertheless in relatively
good agreement with the present thermodynamic results
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FIG. 2. Relative surface tension as a function of droplet ra-
dius, Eqs. (5) and (8). The dotted, dashed, and solid lines are
for T � 0:7�=kB, 0:8�=kB, and 1:0�=kB, respectively. The bold
dashed curve is the fitted Tolman’s equation, ��R�=�y � 1�
2�=R, with � � 0:38�. The triangles (T � 0:71) and crosses
(T � 0:80) are results from simulations of a droplet [7], which
uses the thermodynamic route and Tolman’s equation.
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for large droplet radii. These conventional simulations
rely upon Tolman’s equation to estimate the surface ten-
sion, and so they are not expected to be valid beyond
leading order in 1=R. Likewise, application of the present
results obtained for planar supersaturated interfaces to
very small droplets may be questioned, although one
might expect that the effects of supersaturation ought
simply to be added to the geometric effects of curvature
since the effects of supersaturation on the surface tension
do not disappear just because the interface is curved. The
geometric effects have been previously calculated by
cavity simulations [11] and would act to decrease further
the surface tension at these temperatures.

Tolman’s equation for the curvature correction, ��R� �
�y�1� 2�=R	, fitted to the data at large R in Fig. 2 yields
a value of Tolman’s length of � � 0:38�, with higher
order terms clearly entering at small R. Asymptotic
analysis of Eqs. (5) and (8) yields an explicit expression
for Tolman’s length,

� �
�y

�kBT�l � py��S0 � 1�
: (9)

This gives a value of � � 0:35� for the parameters of
T � 0:8�=kB. This thermodynamic contribution to
Tolman’s length can be compared to the geometric con-
tribution obtained for cavities, 0.15 [11] and to the total
for droplets, 0.4–0.6 [7]. This analytic expression for
Tolman’s length should be generally applicable.

Figure 3 compares the nucleation free energy of the
droplet given by the classical theory using �y with two
versions of the present nonclassical theory that take
into account the effect of supersaturation: one using
��Slocal�R��, and one using the fixed value, ��S�. These
two nonclassical theories correspond to the two extremes
of the physical situation, namely, either the gas above
the droplet is in equilibrium with the droplet, or else it is
in equilibrium with the gas reservoir, with the former
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FIG. 3. Constrained free energy of a growing droplet for T �
0:8�=kB and S � 2. The solid curve uses ��Slocal�R��, the
dashed curve uses fixed ��S�, and the bold curve is the classical
theory using the planar coexistence surface tension, �y. The
dotted curve is 20�S� Slocal	.
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probably being the closest to reality. The two theories that
invoke a supersaturated surface tension greatly lower the
free energy barrier to droplet formation compared to the
classical theory that uses the fixed coexistence value.

In the case of Fig. 3 the change in barrier height is about
40kBT, which is quite significant. [There is a small differ-
ence in the height of the maximum between the two
nonclassical theories, with the one for fixed ��S� being
the lower and occurring at a smaller radius.] Most kinetic
theories invoke a rate constant that is proportional to a
Boltzmann factor of the barrier height, in which case the
present theories predict that the rate of droplet formation
would be a factor of 1017 faster than predicted by the
classical prediction. Such large adjustments to nucleation
rate constants are not unknown in comparing nucleation
theory and experiment and in modifying classical nu-
cleation theory [2,13].

Figure 3 also shows the difference between the local
and the global supersaturation ratios. When the local
supersaturation ratio is larger than the bulk (negative
regions of the dotted curve at small radii, and ��Slocal�<
��S�), vapor diffuses from the droplet to the bulk due to
the chemical potential gradient and the droplet shrinks.
Conversely, for large droplet radii the local supersatura-
tion is less than in the bulk [and ��Slocal� > ��S�], and
vapor diffuses toward the droplet causing it to grow.
When Slocal � S an unstable equilibrium exists. In the
case of Fig. 3 this occurs at R � 3�, which is in agree-
ment with the critical radius of the present theory using
fixed ��S�, and which may be compared to the critical
radius of R � 3:5� for the present theory using
��Slocal�R��. The reasonable agreement between these
supports the physical validity of the present theory.

In summary, a new simulation method has been devel-
oped and applied to a supersaturated liquid-vapor inter-
face. It was shown that the surface tension varied
approximately linearly with the supersaturation ratio
and vanished approaching the vapor spinodal. An expres-
sion for the local supersaturation of the vapor above a
droplet of finite radius was given, which was used to
predict a novel curvature dependence in the surface ten-
sion and to obtain an analytic expression for Tolman’s
length. It was found that the reduction of the surface
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tension by vapor supersaturation substantially decreased
the height of the energy barrier to droplet formation, and
it was concluded that droplets form at a much greater rate
than is predicted by classical homogeneous nucleation
theory. The theory presented here should be applicable
as well to bubble formation and to more general nuclea-
tion phenomena.
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