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We propose a framework to model elastic properties of polycrystals by coupling crystal orientational
degrees of freedom with elastic strains. Our model encodes crystal symmetries and takes into account
explicitly the strain compatibility induced long-range interaction between grains. The coupling of
crystal orientation and elastic interactions allows for the rotation of individual grains by an external
load. We apply the model to simulate uniaxial tensile loading of a 2D polycrystal within linear elasticity
and a system with elastic anharmonicities that describe structural phase transformations. We investigate
the constitutive response of the polycrystal and compare it to that of single crystals with crystallo-
graphic orientations that form the polycrystal.
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been studied with models that describe pattern selection ment vector and ui;j is its jth displacement gradient. For
A study of the mechanical properties of polycrystals is
important as most technologically important materials
exist in a polycrystalline state. A polycrystal is an ag-
gregate of grains that have different crystallographic
orientations. The properties of a polycrystal depend on
its texture (distribution of crystallographic orientations).
It is desirable to understand how the strains due to an
applied external load are distributed and how this influ-
ences the average elastic moduli of the polycrystal [1]. An
important feature of polycrystals is the evolution of the
texture due to rotation of grains during plastic deforma-
tion [2]. In the linear elastic regime where plastic effects
due to dislocations are not important, there are no sig-
nificant changes in the orientation distribution on loading.
However, for materials that are described by nonlinear
elasticity, grain rotations could be important even in the
absence of plastic effects. Therefore, a theoretical frame-
work that couples mechanical effects with the orienta-
tional degrees of freedom is essential to describe the
effective properties of polycrystals.

The problem of finding the effective properties of
polycrystals has been studied using averaging techniques
[1,3]. However, the complex geometry of a polycrystal or
the long-range elastic interactions between the grains are
often not accounted for in these methods. In fact, these
approaches are only able to give bounds on the effective
properties. Recently, the mechanical deformation of pol-
ycrystals has been studied by atomistic simulations [4,5]
which have been limited to nanosized grains. Simulating
bulk systems with atomistic simulations requires enor-
mous computational power and, hence, continuum simu-
lations that can cover a range of intermediate length
scales are essential for describing the microstructure at
the submicron scale. Several phase-field models have been
proposed to model grain growth phenomena [6–8].
Although these models correctly describe the grain mor-
phologies and the domain growth laws, the issues of
elasticity and material specific crystal symmetries are
usually not addressed. Elastic and plastic effects have
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[9]. These are specific only to certain symmetries and do
not contain experimentally measured quantities such as
elastic constants. In this Letter, we propose a polycrystal
model based on continuum elasticity that can be applied
to any crystal symmetry and has the appropriate single-
crystal elastic constants as input parameters. Elastic
strains are coupled to a phase-field model through an
orientation field that is determined from a multicompo-
nent order parameter describing the crystal orientations.
Because of this coupling, the strains in each grain as well
as the grain orientations can change under an external
load. This experimentally relevant feature is not ac-
counted for in models that consider static grains created
by Voronoi construction [10]. In the present work, we
determine the mechanical properties of linear elastic
materials and those described by nonlinear elasticity,
such as martensites.

The free-energy functional is written as F � Fgrain �
Felastic � Fload, where Fgrain is the free-energy density due
to the orientational degrees of freedom of the polycrystal,
Felastic represents the elastic free energy and Fload is the
free-energy contribution due to an external applied load.
The polycrystalline system is described by a set of Q
nonconserved order parameters [6] ��1; �2; . . . ; �Q�. A
given grain orientation corresponds to one of the Q
order parameters being positive nonzero while the rest
are zero. The free-energy Fgrain is given by Fgrain �R
d~rrf
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2g. For a1; a2 < 0 and a3; a4 > 0, the first
two terms describe a potential with Q degenerate
minima corresponding to Q grain orientations. The
gradient energy �K > 0� represents the energy cost
of creating a grain boundary. It is also possible to asso-
ciate an orientational field �� ~��; ~rr�, where �� ~��; ~rr� �
�m
Q
1 ��

PQ
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PQ
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 1�. Thus, there are Q orien-

tations between 0 and �m. For the elastic free energy,
the linearized strain tensor in a global reference frame
is defined by �ij � �ui;j � uj;i�=2 �i � 1; 2 : j � 1; 2�,
where ui represents the ith component of the displace-
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illustration, we consider a 2D lattice with square symme-
try and use the symmetry-adapted linear combinations of
the strain tensor defined as [11] �1 � ��xx � �yy�=

���
2

p
,

�2 � ��xx 
 �yy�=
���
2

p
, and �3 � �xy. To generalize this

theory for the case of a polycrystal, the strain tensor in
a rotated frame is calculated as R��� ~�����RT��� ~����, where
R��� ~���� is a rotation matrix. Using this transformation,
the elastic free energy in a global frame of reference is
Felastic �
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2g, where e1, e2, and e3 are defined as
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�3 sin�2�� ~����, and e3 �
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��2 sin�2�� ~���� � �3 cos�2�� ~����. The orientation

field �� ~��� is determined from the minima of free energy
Fgrain. Here A1 � C11 � C12, A2 � C11 
 C12, and A3 �
4C44, where C11, C12, and C44 are the elastic constants
for a crystal with square symmetry. K2 and K3 are the
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appropriate gradient coefficients that in principle can be
obtained from experimentally measured phonon disper-
sion data. The term fnl�e1; e2; e3� represents the nonlinear
part of the elastic free energy and is crucial in describing
structural phase transitions.

In this Letter, we are interested in simulating a uniax-
ial loading experiment. If we choose the x axis to be the
loading direction, the free-energy contribution due to the
external load is Fload � 
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dent but satisfy a compatibility relationship [12]: r2�1 
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duced earlier for single-crystal martensitic transforma-
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FIG. 1 (color). Spatial distribution of orientation angle ��~rr�
[snapshot (a)] and uniaxial strain �xx�~rr� [snapshot (b)] for stress
� � 2:35 GPa.
where �2� ~kk�, �3� ~kk� represent Fourier transforms of
e2 cos�2�� ~����
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sure that compatibility is satisfied within the grains as
well as at the grain boundaries.

The dynamics of the grains is given by Q equations
@�i
@t � 
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, where "� is a dissipation coefficient and
i � 1; . . . ; Q correspond to Q grain orientations. The cor-
responding overdamped dynamics for the strains is @e2
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#F
#e2

, @e3
@t � 
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, where "2 and "3 are the appro-
priate dissipation coefficients for the strains and F �
Fgrain � Feff is the total free energy of the system.

The mechanical properties of many materials are well
described by the harmonic approximation for which the
nonlinear term fnl�e1; e2; e3� � 0. For a homogeneous
single crystal e2, e3, and ~�� are constant and for Cu A1 �
289:8 GPa, A2 � 47:0 GPa, and A3 � 301:6 GPa ( C11 �
168:4 GPa, C12 � 121:4 GPa, C44 � 75:4 GPa). For the
parameters in Fgrain, we choose a1 � a2 � 
A2, a3 � A2,
a4 � 2A2, Q � 5, and �m � 45�. We choose the gradient
coefficients in terms of an arbitrary length scale # so that
K � K2 � K3 � A2#

2 and lengths are scaled by ~rr � # ~$$ .
The free energy Fgrain then has five degenerate minima
defined by �0� ~��� � 0�, 11:25�, 22:5�, 33:75�, and 45�,
corresponding to five different grain orientations.

To study the polycrystal, we first generate an initial
polycrystalline configuration by solving the evolution
equations for ~��, e2, and e3 with � � 0, using random
initial conditions on a 128� 128 grid with periodic
boundary conditions. For all simulations in this paper,
we assume "� � "1 � "2 � " and use rescaled time
t� � tjA2j". For � � 0, the elastic effects do not influ-
ence the grain growth as all the strains vanish. Grains
with orientations �0� ~��� � 0�, 11:25�, 22:5�, 33:75�, and
45� nucleate and coarsen. We arrest the system in a given
configuration by suddenly changing the value of the pa-
rameter a1 from 
A2 to 
16A2. This increases the free-
energy barriers between the crystalline states and the
growth stops. With the arrested polycrystal configuration
as the initial condition, we simulate a quasistatic uniaxial
tensile loading using the evolution equations. The stress �
is varied in steps of 0.06 GPa, and we let the strains relax
after each change for t� � 25 steps. Figure 1(a) shows the
spatial distribution of the polycrystal orientation ��� ~rr� at
a loading of � � 2:35 GPa for a system of size 128#�
128#. We note that there is no significant motion of the
grain boundaries from the initial arrested configuration to
the configuration depicted in Fig. 1(a). The individual
grains have rotated by a small amount �max�0:01�� due
to the coupling between stress and the orientation. In
Fig. 1(b), we show the corresponding distribution of uni-
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axial strain �xx. It is clear that the strain �xx in a grain
depends on the grain orientation.

In Fig. 2 (inset), we show the variation of the average
strain h�xxi with the load � for the polycrystal. For
comparison, we also plot the analogous single-crystal
curves with crystallographic orientations that constitute
the polycrystal configuration in Fig. 1 (single-crystal
simulations were performed using only one orientation
but with identical free-energy parameters and loading
rate as the polycrystal). The Young’s modulus of the
simulated polycrystal was �126 GPa. This is in the range
of experimentally measured values of 124 GPa [14] and
129.8 GPa [15] quoted for bulk polycrystalline Cu. The
result is not sensitive to the choice of parameters for the
polycrystal phase-field model, at least in the linear elastic
regime.

Another important class of materials that can be
studied using this approach are martensites that undergo
a displacive structural phase transformation. The trans-
formed phase is characterized by a complex arrangement
of crystallographic variants known as twins. We consider
the case of a 2D square to rectangle transition for which
the deviatoric strain e2 is the appropriate order parameter.
For the high temperature square phase e2 � 0 and for the
low temperature martensitic phase e2 � �e0, corre-
sponding to the two rectangular variants. This system
exhibits the so-called shape-memory effect which refers
to the existence of a residual strain on unloading that can
be recovered on heating. The microstructure depends on
the underlying crystal symmetry and, hence, the dis-
placements and domain wall orientations of the atoms
in each grain depend on the grain orientation. Thus, the
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FIG. 2 (color). Average uniaxial strain h�xxi for the marten-
site as a function of the load �. The curves correspond to a
polycrystal (�) and single crystals with �0 � 0� (�), �0 �
7:5� (+), �0 � 15� (*), �0 � 22:5� (�), and �0 � 30� (�).
(inset) h�xxi vs � for the linear elastic case. The curves
correspond to a polycrystal (black, �) and single crystals
with �0 � 0� (�), �0 � 11:25� (+), �0 � 22:5� (*), �0 �
33:75� (�), and �0 � 45� (�), from right to left.
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shape-memory effect will be influenced by the texture
and, hence, it is important to compare the mechanical
response of single and polycrystal martensites.

The anharmonic contribution to the elastic free energy
is given by fnl �

%
4 e

4
2 �

&
6 e

6
2 and describes a first order

transition for %< 0. We choose A1 � 140 GPa, A3 �
280 GPa, % � 
1:7� 104 GPa, and & � 3� 107 GPa,
parameters that correspond to FePd [16]. The constant
A2 depends on the temperature and we choose A2 �

3 GPa, a temperature in the martensitic phase. The
measured gradient coefficient K2=a20 � 25 GPa, where
a0 is the lattice spacing of the crystal and assume
K3 � 0 since the deviatoric strain is the dominant mode
of deformation. The parameters for Fgrain are a1 � a2 �

jA2j, a3 � jA2j, and a4 � 2jA2j, and the grain boundary
coefficient is chosen in terms of the lattice spacing a0 to
be K=a20 � 104jA2j. The space variable is rescaled by
introducing a dimensionless length scale ~$$ so that ~rr �
�100a0� ~$$ . The maximum orientation is chosen to be �m �
30� so, for Q � 5, the allowed orientations are 0�, 7:5�,
15�, 22:5�, and 30�. With the same procedure as for the
linear elastic case, a stable polycrystal configuration is
obtained. When the applied stress � � 0, the parameter
A2 � 
3 GPa ensures that the system is well in the
martensite phase and domains of the two rectangular
variants (twins) are formed. After obtaining a stable
martensitic polycrystal, the loading process is simulated
by quasistatically varying the stress in steps of 7.6 MPa
up to a maximum stress 300 MPa (after each stress
change, the system is allowed to relax for t� � 25 steps).
The system is then unloaded by decreasing the stress to
zero at the same rate.

Figure 3 shows the evolution of variants and the grains
at different stress levels during the loading-unloading
process for a system of size 12 800a0 � 12 800a0. The
left column shows the distribution of �2�~rr� (deviatoric
strain in a global frame) and the right column shows the
corresponding distribution of the orientations �� ~rr�. From
Fig. 3 we note that the domain wall orientations depend
on the orientation of a grain. On loading, the simulated
polycrystal starts to detwin (favored variants grow at the
expense of unfavored ones). However, even at the maxi-
mum load of � � 300 MPa, some unfavorable variants
persist. On complete unloading, a domain structure is
nucleated again due to inhomogeneities in the polycrys-
tal. However, this domain structure is not the same as that
before the loading, indicating an underlying hysteresis.
The orientation distribution is also influenced by the
external load, as seen in the right column of Fig. 3. The
grains with large misorientation with the loading axis
rotate significantly ��10�� while the grains with lower
orientation do not rotate as much. This is due to the
tendency of the system to maximize strain in the loading
direction so as to minimize the elastic free energy. At
high stress, some grain boundaries start moving to ac-
commodate the applied stress, as seen from the orienta-
tion distribution at � � 300 MPa.
055501-3



FIG. 3 (color). Spatial distribution of the deviatoric strain in a
global frame, �2�~rr� [snapshots (a), (c), (e), and (g)] and ori-
entation angle ��~rr� [snapshots (b), (d), (f), and (h)]. The
corresponding stress levels are � � 0 [(a) and (b)], � �
53:8 MPa [(c) and (d)], � � 300 MPa [(e) and (f)], and � �
0 (after unloading) [(g) and (h)]. The rotations of grains can be
inferred from the changing colors of some of the grains. In
addition, grain boundary migration occurs at high stresses, as
can be seen by comparing (d) and (f).
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The stress-strain curve corresponding to Fig. 3 is
shown in Fig. 2 (main figure). Also shown are single-
crystal curves for all five orientations that constitute the
polycrystal of Fig. 3. We observe that the residual strain
for the polycrystal case is much smaller than that for a
single-crystal oriented along the loading axis. These find-
ings are consistent with the fact that polycrystals have
poor shape-memory properties compared to single crys-
tals [3]. The simulations also indicate that grain rotations
will influence the mechanical properties of shape-
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memory alloys. Recently, in situ measurements of texture
evolution during compression experiments on Ni-Ti
shape-memory alloys [17] have been reported. However,
these experiments cannot predict whether the changes in
texture are due to detwinning or rotation of grains. Our
simulations show that both of these processes can con-
tribute to texture evolution.

In summary, we have proposed a framework to study
the mechanical properties of polycrystals in which the
long-range elastic interaction between grains and the
connectivity of the microstructure is taken into account.
The approach can be extended to any crystal symmetry or
loading (e.g., shear) and does not require any a priori
assumption of grain shapes or the microstructure. An
important feature of our work is the coupling between
the grain orientation and elasticity. We have applied the
model to study mechanical properties of linear elastic
and martensitic materials. For the linear elastic case, the
observed grain rotations are small ��0:01�� and, hence,
do not influence the mechanical properties. In contrast,
the martensitic case shows significant grain rotation
��10�� due to accommodation of the transformation
strain. This behavior may be sensitive to the choice of
parameters of the polycrystal model (energy barriers
between grains) and therefore determination of these
parameters from experiment or atomistic simulations
will allow accurate prediction of mechanical properties.
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