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Theory of an Entanglement Laser
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We consider the creation of polarization entangled light from parametric down-conversion driven by
an intense pulsed pump field inside a cavity. The multiphoton states produced are close approximations
to singlet states of two very large spins. A criterion is derived to quantify the entanglement of such
states. We study the dynamics of the system in the presence of losses and other imperfections,
concluding that the creation of strongly entangled states with photon numbers up to a million seems
achievable.
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FIG. 1. Proposed setup for an ‘‘entanglement laser.’’ An in-
tense pump pulse propagates back and forth between the
mirrorsM1 and M2. Whenever it traverses the nonlinear crystal
C it creates polarization entangled photon pairs into the modes
a and b, which are counterpropagating pulses inside the cavity
formed by the mirrors M3 to M6. The interferometrically stable
cavities are adjusted such that the three pulses (pump, a and b)
always overlap in the crystal. The number of photons in a and b
increases exponentially with the number of round-trips. They
can be switched out of the cavity by electro-optic switches Sa
and Sb. The polarization of each pulse is then analyzed with the
help of polarizing beam splitters (PBS) followed by photo-
diodes that give a signal proportional to the number of photons.
Taking the difference between the photon numbers for the two
polarizations behind each PBS corresponds to a spin measure-
ment. The axis of spin analysis is changed by appropriate wave
photon number N: if hJ i=hNi is smaller than 1=2, then plates in front of the PBS.
Entanglement of light has first been demonstrated at
the few-photon level, both for polarization entanglement
in the context of Bell inequality experiments [1] and for
continuous-variable EPR-type entanglement [2]. It is a
challenging goal to extend these results towards the do-
main of macroscopic light. Continuous-variable entangle-
ment for intense fields has recently been demonstrated in
Refs. [3], and polarization entanglement of macroscopic
beams in Ref. [4]. In this latter experiment the quantum
fluctuations around two macroscopic polarized beams are
entangled.

Here we consider polarization entangled states of a
different kind. We aim to create entangled pairs of light
pulses such that the polarization of each pulse is com-
pletely undetermined, but the polarizations of the two
pulses are always anticorrelated. Such a state is the po-
larization equivalent of an approximate singlet state of
two very large spins. It is thus a dramatic manifestation of
multiphoton entanglement.

We propose a scheme that is based on the nonlinear
optical effect of parametric down-conversion driven by a
strong pump pulse, where the interaction length is in-
creased by cavities for both the pump and the down-
converted light. Starting from a spontaneous process,
the proposed setup builds up entangled states which
have very large photon populations per mode, corre-
sponding to strong stimulated emission, and thus deserves
the name of an ‘‘entanglement laser.’’ The basic principle
of stimulated entanglement creation was experimentally
demonstrated in the few-photon regime in Ref. [5].

Multiphoton entanglement of the kind under consider-
ation has been theoretically studied in the context of
Bell’s inequalities [6]. The violation of the inequalities
for large photon numbers studied in that work is very
sensitive to photon loss. This leads to the question whether
the entanglement itself is also very fragile. To analyze
whether multiphoton polarization entanglement can be
generated in the presence of losses and other imperfec-
tions, we derive a simple inseparability criterion that is
formulated in terms of the total spin J and the total
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the state is entangled. Using this criterion we show that
the entanglement is quite robust, and that strongly en-
tangled states of very high photon numbers can be gen-
erated under realistic conditions.

Let us now study our system in more detail. The source
of entangled light [7] is described by a Hamiltonian

H � i��ayhb
y
v � ayvb

y
h � � H:c:; (1)

where a and b refer to the two conjugate directions along
which the photon pairs are emitted, as shown in Fig. 1, h
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and v denote horizontal and vertical polarization, and �
is a coupling constant whose magnitude depends on the
nonlinear coefficient of the crystal and on the intensity of
the pump pulse. The Hamiltonian describes two phase-
coherent twin beam sources, corresponding to the pairs of
modes ah; bv and av; bh. In the absence of losses, it
produces a state of the form

j i � e�iHtj0i �
1

cosh2�

X1

n�0

������������
n� 1

p
tanhn�j n�i; (2)

where � � �t is the effective interaction time and

j n�i �
1������������
n� 1

p
1

n!
�ayhb

y
v � ayvb

y
h �
nj0i

�
1������������
n� 1

p
Xn

m�0

��1�mjn�miah jmiav jmibh jn�mibv :

(3)

All terms in the expansion in Eq. (3) have the same
magnitude, such that the observed polarization (the dif-
ference in the number of horizontal and vertical photons)
will fluctuate strongly. However, there is a perfect anti-
correlation between the a and b pulses. The state j i looks
the same if the axis of polarization analysis is rotated by
the same amount for the a and b modes. It is the polar-
ization equivalent of a spin singlet state [8], where
the spin components correspond to the Stokes parameters
of polarization, JAz � 1

2 �a
y
hah � ayvav�, JAx � 1

2 �a
y
�a��
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ay�a��, and JAy � 1
2 �a

y
l al � ayr ar�. The spin components

can thus be expressed as differences in photon numbers,
where a�;� � �1=

���
2

p
��ah � av� correspond to linearly

polarized light at �45
, and al;r � �1=
���
2

p
��ah � iav� to

left- and right-handed circularly polarized light. The
label A refers to the a modes; cf. Fig. 1. Analogous
relations express JB in terms of the b modes. The
total spin satisfies �JA�2 � �JAx �

2 � �JAy �
2 � �JAz �

2 �
NA
2 �NA2 � 1�. Number states of the modes ah and av are

eigenstates of JAz and of �JA�2. The state jn� kiah jkiav has
total spin j � n=2 and JAz eigenvalue m � �n� 2k�=2.

The states j n�i of Eq. (3) are singlet states of the total
angular momentum operator J � JA � JB for fixed jA �
jB � n=2. As a consequence, h jJ2j i � 0 also for the
state j i of Eq. (2). Losses and imperfections lead to
nonzero values for the total angular momentum, corre-
sponding to nonperfect correlations between the Stokes
parameters in the a and b pulses. Since the ideal state of
Eq. (2) is highly entangled, one expects that states in its
vicinity are still entangled. We now present a convenient
criterion for entanglement: for separable states

hJ2i
hNi

�
1

2
; (4)

where J � JA � JB and N � NA � NB. To prove this,
consider hJ2i for a separable state � �

P
ipi�

A
i � !

B
i .

One has
hJ2i � h�JA�2i � h�JB�2i � 2hJA � JBi �
X
i

pih�JA�2ii �
X
i

pih�JB�2ii � 2
X
i

pihJAiihJBii

�
X
i

pi�h�JA�2ii � h�JB�2ii � 2jhJAiijjhJBiij� �
X
i

pi�h�JA�2ii � h�JB�2ii � 2"i#i�; (5)

where hJAii � Tr�Ai J
A, hJBii � Tr!Bi J

B, etc. Furthermore,"i �
������������������������
h�JA�2ii � 1

4

q
� 1

2 ,#i �
������������������������
h�JB�2ii � 1

4

q
� 1

2 , and we have

used the fact [9] that jhJij �
�����������������
hJ2i � 1

4

q
� 1

2 . The last line of Eq. (5) can be rewritten as

X
i

pi�"2
i � "i � #2

i � #i � 2"i#i� �
X
i

pi��"i � #i�2 � "i � #i� �
X
i

pi�"i � #i� �
1

2
�hNAi � hNBi�; (6)
where the last inequality follows from
�����������������
hJ2i � 1

4

q
� 1

2 �
1
2 hNi, which is a direct consequence of the relation J2 �
N
2 �

N
2 � 1�. Since N � NA � NB, this concludes the proof

of our criterion. Thus every state that has hJ2i=hNi< 1
2 is

entangled. This is a tight bound. There are separable states
that reach hJ2i=hNi � 1

2 , for example, the product state
j2jiah j0iav j0ibh j2jibv , which in spin notation corresponds
to jjA � j; mA � ji � jjB � j;mB � �ji.

It should be emphasized that our criterion is sufficient,
but not necessary. There are entangled states that are not
approximate singlets. Since the Hamiltonian Eq. (1) is
quadratic, Eq. (2) is a Gaussian state, such that the criteria
of Refs. [10] are both sufficient and necessary. However,
their application to our states would require the measure-
ment of quadrature amplitudes of the fields, necessitating
homodyne detection. Our criterion is specifically de-
signed for the class of states under consideration and for
polarization observables. Other criteria for these observ-
ables were derived in Ref. [11] for spin-squeezed states
and in Refs. [4,12] for entangled fluctuations around
macroscopic beams.

The quantities hJ2i and hNi are simple to calculate,
such that the effects of various imperfections can be
studied with ease. We start by investigating the effect of
loss. Loss in a general mode c corresponds to a trans-
formation c!

����
&

p
c�

�������������
1� &

p
d, where d is an empty

mode and & is the transmission coefficient. Let us start
by assuming that the modes ah and ah suffer an equal
amount of loss described by &A, while the bmodes have a
transmission &B. This leads to the transformations
053601-2



FIG. 2. Time development of the ratio hJ2i=hNi and of the
mean photon number hNi. The units are chosen such that t � 1
corresponds to a single pass through the crystal. The initial
photon creation rate �0 � 1, the mean down-converted photon
loss rate �)) � 0:03, and the pump loss rate � � 0:01. After eight
passes hNi reaches the range of millions. The ratio hJ2i=hNi is
shown for three different values of the loss rate imbalance �),
namely, 0, 0.001, and 0.002.
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h�JA;B�2i ! &2
A;Bh�J

A;B�2i � 3
4&A;B�1� &A;B�hNA;Bi;

hJA � JBi ! &A&BhJA � JBi:
(7)

The state before losses, Eq. (2), has h�JA�2i � h�JB�2i �
�hJA � JBi, hN2

Ai � hN2
Bi � hNANBi, and hNAi � hNBi �

hNi=2, which leads to the following expression for the
total angular momentum after losses:
hJ2i ! ��&�2h�JA�2i � 3

8�&A�1� &A� � &B�1� &B��hNi;

(8)

where �& � &A � &B. The first term, which depends on
�&, is of order hNi2, while the second term is only
O�hNi�. Equation (8) together with our entanglement
criterion implies the condition �& & 2

���
2

p
=

��������
hNi

p
. The

losses (including detection efficiencies) in the a and b
modes thus have to be well balanced in order to observe
entanglement for large photon numbers. An equivalent
requirement was met for hNi of order 106 in the experi-
ment of Ref. [13] that demonstrated the strong photon
number correlations of pulsed twin beams by direct in-
tegrative detection. An analogous condition can be de-
rived for a difference in losses between different
polarization modes. If all modes suffer the same amount
of loss, described by a transmission &, then only the
second term in Eq. (8) remains, leading to a loss-induced
correction to the ratio hJ2i=hNi of 3�1�&�

4 , taking into
account that the losses also transform hNi into &hNi.
This gives a critical transmission value &c � 1=3, above
which entanglement is provable by our criterion. The
entanglement is thus surprisingly robust under balanced
losses.

So far we have considered a situation where first the
ideal state of Eq. (2) is created, and then it is subjected to
loss. However, in the cavity setup of Fig. 1, which is
required to achieve high photon numbers, photon creation
(in the nonlinear crystal) and loss (in the crystal and all
other optical elements) happen effectively simultaneously.
It is convenient to transform to a new basis of modes
given by c1 � �1=

���
2

p
��ah � bv�, c2 � �1=

���
2

p
��ah � bv�,

c3 � �1=
���
2

p
��av � bh�, c4 � �1=

���
2

p
��av � bh�. In this ba-

sis the Hamiltonian (1) becomes that of four independent,
but phase-coherent, squeezers, H � i�

2 ��c
y
1 �

2 � �cy2 �
2 �

�cy3 �
2 � �cy4 �

2 � H:c:�. Introducing the quadrature opera-
tors xi � �1=

���
2

p
��ci � cyi �, pi � ��i=

���
2

p
��ci � cyi � gives

H � �
2 �x1p1 � x2p2 � x3p3 � x4p4� � H:c: Writing

down the Heisenberg equations for this Hamiltonian,
_xx1 � i�H; x1�, etc., one sees that hp2

1i, hx
2
2i, hx

2
3i, and hp2

4i
become squeezed exponentially, while the fluctuations in
the conjugate quadratures, hx21i, hp2

2i, hp2
3i, hx24i grow

correspondingly. In the presence of losses, the
Heisenberg equations have to be replaced by Langevin
equations of the form _xx1 � ��t�x1 � )x1 � fx1�t�, _pp1 �
���t�p1 � )p1 � fp1�t�, and corresponding equations
for the other modes. Here the time dependence of ��t� �
�0e��t takes into account the loss of the pump beam
while ) is the loss rate of the down-converted light;
053601-3
fx1�t� and fp1�t� are the quantum noise operators associ-
ated with the losses [14], satisfying hfx1�t�fx1�t

0�i �
hfp1�t�fp1�t0�i � �ihfx1�t�fp1�t0�i � )+�t� t0�. Here we
have assumed that the loss rate ) is the same for all
four down-conversion modes ah, av, bh, bv. We will
discuss the case of unbalanced loss rates below.

The equation for x1 can be integrated explicitly,

leading to x1�t� � e
R
t

0
k�t0�dt0x1�0� �

R
t
0 dt

0e
R
t

t0
k�t00�dt00fx1�t

0�,

where k�t� � ��t� � ) and
R
t
t0 ��t

00�dt00 � �0
� �e��t0 �

e��t�. There is a corresponding expression for p1�t� where
the sign of ��t� is flipped. To understand what these results
imply for the polarization entanglement, one can express
the angular momentum in terms of the quadratures xi; pi.
One finds Jz �

1
2 �x1x2 � p1p2 � x3x4 � p3p4�, Jx �

1
2 �x1x3 � p1p3 � x2x4 � p2p4�, and Jy �

1
2 ��x1p4 �

x4p1 � x2p3 � x3p2�. Introducing the generic notation p
for the quadratures p1, x2, x3, and p4, which are squeezed,
and x for x1, p2, p3, and x4, whose fluctuations grow
exponentially, one sees that the Ji have the generic form
x � p, and one finds hJ2i � 3�hx2ihp2i � 1

4�. The total
photon number N � 1

2

P
i�x

2
i � p2

i � 1�, leading to hJ2i
hNi �

3
2

hx2ihp2i�1
4

hx2i�hp2i�1
.

Figure 2 shows the expected time development of the
mean photon number hNi and the ratio hJ2i=hNi for real-
istic parameter values. The experimentally achievable
value for � can be estimated by extrapolating existing
experimental results [5] to higher pump laser intensities.
A value of � � �t � 1 for a single pass through a 2 mm
BBO crystal is realistic with weakly focused pump pulses
of a few ,J, which is still below the optical damage
threshold. The cavity design of Fig. 1 will have loss rates
on the percent level. Figure 2 shows that very high photon
numbers can be achieved with just a few round-trips. If
balanced losses are the only imperfection, then the en-
tanglement is very strong even for large photon numbers,
053601-3
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as long as the ‘‘laser’’ is far above threshold, i.e., as long
as the rate of creation of entangled photon pairs � is much
larger than the loss rate ).We are interested in the regime
far from saturation (depletion of the pump).

The photon number hNi is limited by the requirement
of observing entanglement in the presence of other im-
perfections. In particular, Fig. 2 shows the effect of a
difference in the loss rates between the a and b modes.
Suppose that the modes ah and av have one loss rate )A,
while bh and bv have a different one )B. Then the quad-
ratures xi; pi no longer diagonalize the system. For ex-
ample, x1 and x2 satisfy the coupled equations

_xx1 � ��t�x1 � �))x1 �
�)
2
x2 � fx1�t�;

_xx2 � ���t�x2 � �))x2 �
�)
2
x1 � fx2�t�; (9)

where �)) � 1
2 �)A � )B�, �) � )A � )B, and fx1;x2 are the

appropriate noise operators. There are analogous coupled
equations for the pairs p1 and p2, x3 and x4, and p3

and p4. These equations are diagonal for a new basis of
modes -i; .i that is related to the xi; pi by a small rota-
tion, which for �)� � takes the following simple form:
x1 � -1 � ��)=4��-2, x2 � ���)=4��-1 � -2, x3 �
-3 � ��)=4��-4, x4 � ��)=4��-3 � -4, and identical
equations for the pi in terms of the .i. In analogy to
the case of balanced losses, the quadratures -1, .2, .3,
and -4 grow exponentially, while the quadratures .1, -2,
-3, and .4 become squeezed. Because of the small rota-
tion between the old and new diagonal modes, the Ji
contain terms that are quadratic in the new large quad-
ratures �-1; .2; .3; -4�. This leads to an O�hNi2� contri-
bution to J2. The dominating correction to the ratio
hJ2i=hNi is ��)�2

32�2
hNi, leading to the condition �)=� &

4=
��������
hNi

p
for observing entanglement. Far above threshold

(i.e., for )� �) this is fairly easy to satisfy even for very
large photon numbers.

The effects of other imperfections can be studied anal-
ogously. The most important one is a phase mismatch
between the two twin beams, i.e., a Hamiltonian H �
i��ayhb

y
v � ei/ayvb

y
h � � H:c: instead of Eq. (1). This gives

a correction to the ratio hJ2i=hNi whose dominant term is
1
16/

2hNi, leading to a condition/ & 4=
���
3

p
hNi for observ-

ing entanglement. This means that strong entanglement of
a million photons can be observed if / is of order
.=1000. This level of precision of optical phases is chal-
lenging, but conceivable. Strong entanglement for smaller
photon numbers is correspondingly easier to achieve.
Another relevant imperfection is a birefringence-related
mode mismatch, corresponding to a Hamiltonian H �
i��ayh ~bb

y
v � ~aayvb

y
h � � H:c:, where the spatiotemporal

modes ~aa and ~bb of the vertical light differ slightly from
the modes a and b of the horizontal light. A mode mis-
match that affects the a and b modes in a symmetric way
leads to a correction to hJ2i=hNi that does not grow with
hNi. As before, an asymmetry leads to an O�hNi� effect.
053601-4
All significant errors, including the phase mismatch, are
related to symmetry breaking between the a and b modes.
Geometric symmetry between a and b should be imple-
mentable to very high accuracy for the setup of Fig. 1.

In conclusion, the goal of producing strongly entangled
singletlike states of very large photon numbers seems
realistic with our proposed system. Besides extending
the domain where quantum phenomena have been ob-
served, such states would also have interesting applica-
tions, for example, in quantum cryptography [8].
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