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We present a model-independent theory for laser detachment of a weakly bound electron having a
nonzero angular momentum. Our treatment reduces to the well-known Keldysh result for tunnel
ionization upon neglecting rescattering effects. Numerical results for the above-threshold detachment
spectrum of a negative ion having an outer p electron show significant modification of the rescattering
plateau as compared to that for an ion having an outer s electron.
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states (QQES) approach of Ref. [6] (in which they treat an
s electron bound in a ZRP in the presence of a strong laser

to the binding potential U�r�, whereas at large r (r > rc)
we can construct the general solution of Eq. (1) as a wave
Many effects of intense laser interactions with atoms
and ions have their origin in the basic processes of above-
threshold ionization (ATI) or detachment (ATD), in
which the electron spectrum exhibits a series of peaks,
separated by the photon energy, and having nearly equal
intensity over a large energy region (the so-called ‘‘pla-
teau’’ region). Key features of ATI spectra have been
understood using classical, semiclassical, or approximate
quantum analyses and calculations [1–3]. These indicate
that the low-energy ATI peaks result from direct ioniza-
tion by tunneling [and hence their intensity may be
estimated using the Keldysh approximation (KA) [4] ],
while the high-energy ATI peaks on the plateau result
from inelastic, laser-assisted electron scattering from the
atomic core. An accurate quantum treatment may be
carried out for one-electron systems, either numerically
(the results of which support the single active electron
origin of plateaus in ATI spectra [5]) or by use of simple
analytical model potentials. A fruitful model for analy-
sing strong field effects in negative ions beyond the KA is
the zero-range potential (ZRP) model, which permits an
accurate, ab initio formulation of the problem [6] as well
as essentially exact numerical results [7]. However, the
ZRP is valid only for s-electron initial states and does not
allow one to analyze the dependence of ATD features on
the initial state symmetry. This symmetry is important
already in the KA [8]: in this approach it determines the
interference of two saddle-point contributions to the ATD
rate that result in a significant dependence of the photo-
electron angular distributions (ADs) on the initial state
parity.

In this Letter, we present a general approach for the
description of strong laser detachment of a weakly bound
electron having an initial angular momentum l in a short-
range potential well. Our treatment combines the effec-
tive range approach of Refs. [9,10] (in which they treat a
weakly bound electron with arbitrary l subjected to a
static perturbation) with the quasistationary quasienergy
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field). Our analysis shows that the existence of a high-
energy (rescattering) plateau is a general feature for an
arbitrary initial l. However, the interference pattern at the
onset of the plateau, the height of the high-energy plateau
relative to the low-energy (KA) part of the electron
spectrum, and the shape of the ADs all depend signifi-
cantly on the initial state symmetry. The results presented
here are thus more appropriate than ZRP-based predic-
tions of either ATI features for inert gases (other than He)
or ATD features of negative ions having valence p elec-
trons (for which experiments are in progress [11]).

In the QQES approach, the decay of a bound state,
 0�r�, in the potential U�r� having the energy E0 �
�� �h2	2�=2m and subjected to a monochromatic laser field
F�t� � F cos!t is described by the periodic in time QQES
wave function ���r; t�, which satisfies outgoing-wave
boundary conditions. It is the solution of the eigenvalue
Schrödinger equation [12],
�
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� ��
�h2

2m
��U�r� � jejzF cos!t

�
���r; t� � 0;

(1)

for the complex quasienergy, � � Re �� i�=2, where �
is the total decay rate of the state  0�r�.

We assume that the potential U�r� supports a shallow
bound state  0�r�, having angular momentum l, and van-
ishes outside a radius r � rc. Owing to the known asymp-
totic form of an initial bound state  0�r�,

 0�r�jr!1 ! Cl r�1e�	rYlm�r̂r�; (2)

our assumption of a shallow bound state means that
	rc 
 1. E0 and Cl are regarded as parameters of the
problem. To obtain the complex quasienergy �, we
generalize the method used in Refs. [9,10] for time-
independent Hamiltonians to our time-dependent case.
The general idea is that at small r (r & rc) the interaction
potential with the laser field may be neglected compared
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packet composed of free electron states in a laser field,
i.e., for U�r� � 0. The equation for � may then be ob-
tained by properly matching the solutions of Eq. (1) in the
small-r and large-r regions at some point r * rc. The key
simplification is that the solution of Eq. (1) inside a short-
range potentialU�r� (i.e., for r & rc) is independent of the
shape ofU�r�, in accord with effective range theory. Since
any solution of Eq. (1) has the quasienergy form,
���r; t� �

P
s�

s!
� �r� exp��is!t�, we represent it for

small r as follows (cf. [10,13]):

���r; t�� Ylm�r̂r�
X
s

�r�l�1 �    � rlBl��� s �h!��fs

� exp��is!t�; (3)

where the fs are Fourier-coefficients of a periodic func-
tion f��t� �

P
sfs exp��is!t�, and where

�2l� 1�!!�2l� 1�!!Bl�E� � � 1=al � rlk2=2;

k2 � 2mE= �h2:

The parameters al and rl are the scattering length and the
effective range [13], which may be expressed in terms of
	 and Cl [9,10]. Thus, the wave function (3) retains the
spatial symmetry of the initial state  0�r� [cf. Eq. (2)].
However, its radial dependence involves the irregular
solution ( � r�l�1 at r! 0) for the potential U�r�.

Next, starting from Eq. (1) with U�r� � 0, we seek a
solution which satisfies the outgoing-wave boundary con-
dition for r! 1 and has the singularity �r�l�1Ylm�r̂r� at
r! 0. For this purpose we introduce the function

���r; r0; t� � 2�
Z
dt0ei��t�t

0�= �hf��t0�G����r; t; r0; t0�; (4)

where G��� is the retarded Green’s function for a free
electron in the laser field F�t�. One easily verifies that
���r; 0; t� is the solution of Eq. (1) with U�r� � 0 having
an outgoing-wave form at large r and the singularity
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�r�1 at r! 0. The solution ���r; t� with the proper
singularity at r! 0 may be obtained from ���r; r0; t� by
acting on it with the differential operator Ylm�@=@r0� and
then setting r0 � 0 (cf. Refs. [9,10]). For p states, the
desired solution ���r; t� is proportional to�

@
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�
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�
@
@x0

� im
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�
jmj
���r; r0; t�jr0�0: (5)

Taking into account the Feynman form for G��� in terms
of the classical action S�r; t; r0; t0�, the QQES wave func-
tion for a p state may be presented as

���r; t� � C1

�����
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Y1;m�r̂r� � &m;0’�t; %�

�
f��t� %�;

(6)

where
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�
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2
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2
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�
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2
� t

��
:

In Eq. (6) and below we use the following scaled units:
the laser amplitude F is measured in units of F0 ������������������
2mjE0j3

p
=jej �h, and energies and �h! in units of jE0j.

Since the interaction with a laser field destroys the spheri-
cal symmetry of the problem, only the initial angular
momentum projection, m, is conserved; thus, the QQES
wave function (6) involves (laser field-induced) angular
momentum components with any l � jmj [14]. Analysis
of Eq. (6) shows that, as for the ZRP model [6], the
function f��t� involves only even Fourier harmonics,
fs � f2k, for both m � 0 and jmj � 1. Expanding
���r; t� in Eq. (6) in r up to terms �r, projecting it
onto the spherical harmonic Y1m�r̂r�, and comparing the
result with Eq. (3), we obtain an infinite homogeneous
system of linear equations for f2k and �:
�

1� ���� 2k!�3=2 �
r1
2
�1� �� 2k!�

�
f2k �

X
k0
�Mk;k0 ��� � &jmj;0

~MMk;k0 ����f2k0 ; (7)

where the matrix elements Mk;k0 and ~MMkk0 involve integrals of Bessel functions Jk�k0 �x� (cf. [6]).
The n-photon ATD amplitude, An, for electron ejection in the direction n � r=r is given by the nth Fourier

coefficient in the asymptotic form of ���r; t� in Eq. (6) at jrj ! 1 and may be presented as (cf. Ref. [7] for l � 0):

A�jmj�
n �n� � in�1

�������
3

4�

r
C1kn

X
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Js

�
up
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2Fkn cos,

!2

�

�

�
sin,���
2

p &m;�1 �
�
cos,�

!�n� 2s� 2k�

2k2n cos,

�
&m;0

�
; (8)

where , is the angle between n and F, kn �
����������������������������
�� n!� up

p
, and up is the scaled ponderomotive shift

Up � e2F2=�4m!2�, i.e., up � Up=jE0j � F2=�2!2�. The n-photon differential detachment rate is given by

d��jmj�n �n�
d�

� 2j
�����
kn

p
A�jmj�

n �n�j2: (9)

Our quantum approach justifies analytically the Keldysh result [4] for tunnel ionization (in particular, it resolves a
longstanding problem regarding which gauge must be used in Keldysh-like theories [15]) and provides clear evidence of
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FIG. 1. ATD spectra in scaled units (s.u.) (along the polar-
ization axis, , � 0) as a function of electron energy in units of
Up for H� (s state; thin lines) and F� (p state; thick lines) at
the same scaled parameters: ! � 0:203, F � 0:2835. Solid
lines: exact results; dashed lines: the KA results. Solid circles
mark the positions of ATD peaks (up to n � 67). Results for F�

are multiplied by the factor 6.24 in order that the maximum
rates are the same in the H� and F� ATD spectra.

FIG. 2 (color online). Photoelectron ADs for (a) H� and
(b) F� for the same laser parameters as in Fig. 1. The solid
curves parallel to the , axis mark the ADs at the onset of the
plateaus, i.e., at En � 3:8Up �n � 28� for the s state and En �
4:37Up �n � 31� for the p state. The first open ATD channel is
n0 � 10.
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‘‘rescattering’’ effects. Indeed, for not too high F �F 

1� and low frequencies �- � �!=F� 
 1�, it is reasonable
to expect that the time dependence of f��t� in Eq. (3) is
weak and to retain only the coefficient fs�0 � 1. Then the
KA result for An follows from our exact Eq. (8) by
neglecting all coefficients f2k except f0 � 1 and setting
� � E0 � �1. In the KA limit our numerical results (see
the dashed curves in Fig. 1) are in close agreement with
KA results by Gribakin and Kuchiev [8]. Thus, the KA
corresponds to an approximate (particular) solution of
Eq. (1), i.e., the wave packet (6) with f� � 1 and � �
E0. The general solution (6), however, involves higher
harmonics of f��t� as well, which correspond to the
shifted quasienergy, �! �� s! [see Eq. (3)], and, in
classical terminology, the terms with k � 0 in the ATD
amplitude (8) describe rescattering effects.

To present our numerical results we choose ! � 0:203;
this corresponds to . � 1:8 /m (or �h! � 0:689 eV) for
the F� ion (for which jE0j � 3:4 eV and C1 � 0:84 a:u:),
as in the experiment [11]. We present also results for H�

for the same scaled laser parameters ! and F (note that
the scaled unit of intensity I � F2 for F� is IF� � 1:37�
1014 W=cm2 � 91:5IH�). Figure 1 shows a number of
marked differences between results for p and s states in
the strong field regime (for the Keldysh parameter - �
!=F � 0:715). In both cases the KA breaks down (and
thus the onset of the plateau occurs) at approximately the
same electron energy (i.e., �3:8Up for the s state and
�4:4Up for the p state) [16] and the plateau cutoffs
correspond to the well-known classical estimate,
�10Up [3]. However, the interference pattern near the
onset energy is much more pronounced for F�, and the
height of the plateau (relative to the KA part of the ATD
spectrum) for p states exceeds that for s states by an order
of magnitude on average.
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As a result of interference between ‘‘direct’’ and ‘‘re-
scattered’’ electrons near the plateau onset, for p states
the ATD spectrum in Fig. 1 decreases (on average) less
precipitously with energy than for s states. Such behavior,
as well as the relation between the KA and high-energy
parts of the spectrum, are in better qualitative agreement
with experiments for the inert gases [17] (other than He,
for which the s-state ATD spectrum is more relevant [18]).
Figure 2 presents 3D ADs. One sees that the p state (F�)
AD differs considerably from that for the s state (H�).
The two ADs have similar shapes only near and beyond
the cutoff [where only a few coefficients f2k with k �
kmax contribute to the amplitude (8); see below]. On the
plateau one observes also a clear periodicity of the ADs
with energy (or n). However, the AD for F� is much more
localized about , � 0�(along the direction of F) and
exhibits a more pronounced side-lobe structure near the
plateau onset.

These results are consistent with the assumption that
the relative enhancement of the p-electron plateau is
caused mostly by a decrease of the KA part of the
spectrum with increasing initial angular momentum.
Figure 3 presents numerical evidence supporting this
053003-3
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FIG. 3. The spectra of coefficients f2k for laser parameters as
in Fig. 1. Squares: l � m � 0; solid circles: l � 1, m � 0; open
circles: l � 1, m � �1. The arrow marks the cutoff at
2kmax! � 1� 3:1732up (see text).
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assumption: the coefficients f2k for k � 0 that are respon-
sible for the plateau have about the same magnitude for
the cases of l � 0 and l � 1, m � 0. The suppression of
coefficients for m � �1 (cf. Fig. 3) is expected, since
rescattering stems mostly from the S-wave component
of (6), whereas for m � �1 there is none; rescattering
for higher l components is suppressed by the centrifugal
barrier. The most spectacular feature of Fig. 3 is the
plateaulike structure of the f2k spectrum, which in turn
leads to plateau features in the ATD spectrum. A detailed
analysis for different F and ! predicts the cutoff in
the f2k spectrum to occur at k � kmax, where (in
abs. units) E0 � 2kmax �h! � Ecl, and where Ecl �
4Upsin

2�!�t=2� ’ 3:1732Up is the well-known maxi-
mum energy of a classical electron, produced with zero
velocity in a laser field, that returns to the same point r
after a time interval�t [19]. This connection of the cutoff
in the quantum coefficients f2k with the purely classical
quantity, Ecl, gives clear evidence of classical features in
the behavior of a bound electron in a strong laser field.

In conclusion, we have presented the first quantum
analysis of strong field ATD spectra for a weakly bound
electron with initial angular momentum l in a short-
range potential U�r�. Our treatment encompasses the
well-known KA result as a limiting case and demon-
strates how the classical rescattering model follows
from our quantum analysis. Our predicted enhancement
of plateau effects and modification of ADs for valence
p electrons may be useful for quantitatively de-
scribing negative ion ATD and qualitatively describing
rare gas ATI.
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Computing Facility.
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